1009. Mersenne Composite N

本文介绍了一种用于寻找特定形式的合数——梅森合数的算法。这些合数可以表示为2^p-1的形式,其中p是质数。文章详细解释了如何判断梅森数是否为合数,并通过分解质因数来验证这一性质。
部署运行你感兴趣的模型镜像

1009. Mersenne Composite N

Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

Description

One of the world-wide cooperative computing tasks is the "Grand Internet Mersenne Prime Search" -- GIMPS -- striving to find ever-larger prime numbers by examining a particular category of such numbers.
A Mersenne number is defined as a number of the form (2p–1), where p is a prime number -- a number divisible only by one and itself. (A number that can be divided by numbers other than itself and one are called "composite" numbers, and each of these can be uniquely represented by the prime numbers that can be multiplied together to generate the composite number — referred to as its prime factors.)
Initially it looks as though the Mersenne numbers are all primes.

PrimeCorresponding Mersenne Number
24–1 = 3 -- prime
38–1 = 7 -- prime
532–1 = 31 -- prime
7128–1 = 127 -- prime


If, however, we are having a "Grand Internet" search, that must not be the case.
Where k is an input parameter, compute all the Mersenne composite numbers less than 2k -- where k <= 63 (that is, it will fit in a 64-bit signed integer on the computer). In Java, the "long" data type is a signed 64 bit integer. Under gcc and g++ (C and C++ in the programming contest environment), the "long long" data type is a signed 64 bit integer.

Input

Input is from file a. in. It contains a single number, without leading or trailing blanks, giving the value of k. As promised, k <= 63.

Output

One line per Mersenne composite number giving first the prime factors (in increasing order) separate by asterisks, an equal sign, the Mersenne number itself, an equal sign, and then the explicit statement of the Mersenne number, as shown in the sample output. Use exactly this format. Note that all separating white space fields consist of one blank.

Sample Input

31

Sample Output

23 * 89 = 2047 = ( 2 ^ 11 ) - 1
47 * 178481 = 8388607 = ( 2 ^ 23 ) - 1
233 * 1103 * 2089 = 536870911 = ( 2 ^ 29 ) - 1

#include <iostream>
#include <cmath>
using namespace std;

bool prime(int a)
{
	for (long long int i = 2; i * i <= a; i++)
		if (a % i == 0)
			return false;
	return true;
}

int main()
{
	int n;
	cin >> n; 
	for (int i = 3; i < n; i += 2)
	{
		//i要为素数
		if (!prime(i)) continue;
		bool t1 = false, t2 = false;
		long long int num = pow(2, i) - 1;
		long long int temp_num = num;
		//if (!prime(num))
		//{
			for (long long int index = 3; index * index <= num; index += 2)
			{
				//分解质因数
				if (num % index == 0) {
					if (!t1)
						cout << index;
					else 
						cout << " * " << index;
					num /= index;
					index = 1;
					t1 = true;
					t2 = true;
				}
			}
		//}
		if (t2)
		{
			cout << " * " << num  << " = " << temp_num <<" = ( 2 ^ "<< i << " ) - 1"<<endl;
		}
	}

	system("pause");
	return 0;
}


您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值