字符串哈希

本文介绍了如何使用字符串哈希,特别是双模法(取两个不同质数的模),在判断字符串相等、检测回文以及寻找最长回文子串问题中的应用。代码示例展示了如何通过计算哈希值进行这些操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

字符串哈希

类似于十进制和二进制,字符串哈希一般自定义为 B a s e Base Base进制然后对 M o d Mod Mod取模或者 u l l ull ull自然溢出来达到取模。但是为了防止出题人卡哈希,一般采用双 M o d Mod Mod法,即取两个不同的质数,常用的有: 1 e 9 + 7 , 1 e 9 + 9 1e9+7,1e9+9 1e9+7,1e9+9; B a s e Base Base一般也采用: 131 131 131或者 13331 13331 13331

公式: h a s h [ i ] = ( h a s h [ i − 1 ] ∗ B a s e + s u m [ i ] ) hash[i]=(hash[i-1] * Base + sum[i]) hash[i]=(hash[i1]Base+sum[i])% M o d Mod Mod

应用:

1.判断两个字符串是否相同

2.判断是否回文,并求最长回文子串

代码:

#include<bits/stdc++.h>
#define int long long
#define endl '\n'
using namespace std;
const int N=1e5+50,M=1e9+7;
const int mod=1e9+7;
const int P=13331;
typedef long long ll;
typedef pair<int,int> PII;
typedef unsigned long long ull;
string s,t;
vector<ull> p(N);
vector<ull> hls(N);
vector<ull> hrs(N);
vector<ull> hlt(N);
vector<ull> hrt(N);
int n,m;
int l[N];
int r[N];
string rs,rt;
void init()
{
    p[0]=1;
    hls[0]=0;
    hls[0]=0;
    for(int i=1;i<=n+1;i++)
        p[i]=p[i-1]*P;
    for(int i=1;i<=n;i++)
        hls[i]=hls[i-1]*P+(s[i-1]-'a');
    for(int i=1;i<=m;i++)
        hlt[i]=hlt[i-1]*P+(t[i-1]-'a');
    rs=s;rt=t;
    reverse(rs.begin(),rs.end());
    reverse(rt.begin(),rt.end());
    for(int i=1;i<=n;i++)
        hrs[i]=hrs[i-1]*P+(rs[i-1]-'a');
    for(int i=1;i<=m;i++)
        hrt[i]=hrt[i-1]*P+(rt[i-1]-'a');
}
ull get_ls(int l,int r)  //s正序
{
    return (hls[r]-hls[l-1]*p[r-l+1]);
}
ull get_rs(int l,int r)  //s逆序
{
    return (hrs[r]-hrs[l-1]*p[r-l+1]);
}
ull get_lt(int l,int r)  //t正序
{
    return (hlt[r]-hlt[l-1]*p[r-l+1]);
}
ull get_rt(int l,int r)  //t逆序
{
    return hrt[r]-hrt[l-1]*p[r-l+1];
}
signed main()
{
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    cin>>n>>m;
    cin>>s>>t;
    if(n<m)
    {
        swap(n,m);
        swap(s,t);
    }
    init();
    for(int i=0;i<=n;i++)
        l[i]=-1,r[i]=-1;
    for(int i=1;i<=m;i++)
    {
        if(get_ls(1,i)==get_rs(n-i+1,n)&&get_ls(1,i)==get_rt(1,i))  //回文且s,t相同
        {
            l[i]=i;
        }
        if(get_lt(1,i)==get_rt(m-i+1,m)&&get_lt(1,i)==get_rs(1,i))
        {
            r[i]=i;
        }
        l[i]=max(l[i],l[i-1]);
        r[i]=max(r[i],r[i-1]);
    }
    int ans=-1;
    for(int i=1;i<=m;++i)
    {
        if(l[i]!=-1&&r[m-i]!=-1) ans=max(ans,2*(l[i]+r[m-i]));
    }
    cout<<ans<<endl;
    return 0;
} 

链接: problem

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值