一、文件目录
附加【pt转onnx】
# Pytorch模型转换为Onnx模型
import onnx
from onnxruntime.quantization import quantize_dynamic,QuantType
from onnxconverter_common import float16
#yolov8原生转换
# from ultralytics import YOLO
# model = YOLO(r'C:\YOLOv8-Openvino-master\best.pt')
# result = model.export(format='onnx')
#fp16
# model = onnx.load(r"C:\Users\Acer\Desktop\new\best.onnx")
# model_fp16 = float16.convert_float_to_float16(model)
# onnx.save(model_fp16,r"C:\Users\Acer\Desktop\new\onnx_fp16\best_fp16.onnx")
# ******************************************
# model_fp32 = r"C:\Users\Acer\Desktop\new\best.onnx"
# model_quant = r"C:\Users\Acer\Desktop\new\onnx_fp16\best_int8.onnx"
# quantized_model = quantize_dynamic(model_fp32,model_quant)
# **********************************************
def quantize_onnx_model(onnx_model_path, quantized_model_path):
from onnxruntime.quantization import quantize_dynamic, QuantType
import onnx
onnx_opt_model = onnx.load(onnx_model_path)
quantize_dynamic(onnx_model_path,quantized_model_path,weight_type=QuantType.QUInt8)
二、各个目录下代码
其中①运行即可出现[y1,x1,y2,x2,conf,class]的预测结果
-- ①model_predict.py
from yolov8.YOLOv8 import YOLOv8
import numpy as np
import cv2
class predict:
def __init__(self, **kwargs):
self.yolov8_detector = YOLOv8(r"./best_new_int8.onnx", conf_thres=0.6, iou_thres=0.4)
def detect_image(self, image_path):
img = cv2.imread(image_path)
boxes, scores, class_ids = self.yolov8_detector(img)
results = []
for ii, i in enumerate(boxes):
ls = i.tolist()
ls.append(scores[ii])
ls.append(class_ids[ii])
results.append(ls)
return np.array(results)
if __name__ == '__main__':
image_path = r"C:\Users\Acer\Desktop\data_d\train\images\283.jpg"
s = predict()
ls = s.detect_image(image_path)
print(ls)
# 下面是使用cv检验权重模型的准确性
# img = cv2.imread(fill)
# for i in ls:
# y1 = int(i[0])
# x1 = int(i[1])
# y2 = int(i[2])
# x2 = int(i[3])
# cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 0), 3)
# cv2.imshow('img', img)
# cv2.waitKeyEx(0)
# cv2.destroyAllWindows()
②-- YOLOV8.py
这个py文件引用了utils.py文件里面的NMS、和坐标转换、draw_detections(画框)
坐标转换:将中心点坐标转换为左上角右下角坐标
NMS:非极大值抑制
—— 1.计算框的面积
——2.计算相交面积(相交、不相交)
—— 3.计算该框与其它框的IOU,去除掉重复的框,即IOU值大的框
—— 4.IOU小于thresh的框保留下来
import time
import cv2
import numpy as np
import onnxruntime
from yolov8.utils import xywh2xyxy, multiclass_nms # draw_detections,
class YOLOv8:
def __init__(self, path, conf_thres=0.7, iou_thres=0.5):
self.conf_threshold = conf_thres
self.iou_threshold = iou_thres
# Initialize model
self.initialize_model(path)
def __call__(self, image):
return self.detect_objects(image)
def initialize_model(self, path):
self.session = onnxruntime.InferenceSession(path,
providers=onnxruntime.get_available_providers())
# Get model info
self.get_input_details()
self.get_output_details()
def detect_objects(self, image):
input_tensor = self.prepare_input(image)
#
# input_tensor= input_tensor.astype(np.float16)
# Perform inference on the image
outputs = self.inference(input_tensor)
self.boxes, self.scores, self.class_ids = self.process_output(outputs)
return self.boxes, self.scores, self.class_ids
def prepare_input(self, image):
self.img_height, self.img_width = image.shape[:2]
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Resize input image
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
# Scale input pixel values to 0 to 1
input_img = input_img / 255.0
input_img = input_img.transpose(2, 0, 1)
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
return input_tensor
def inference(self, input_tensor):
start = time.perf_counter()
outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})
# print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
return outputs
def process_output(self, output):
predictions = np.squeeze(output[0]).T
# Filter out object confidence scores below threshold
scores = np.max(predictions[:, 4:], axis=1)
predictions = predictions[scores > self.conf_threshold, :]
scores = scores[scores > self.conf_threshold]
if len(scores) == 0:
return [], [], []
# Get the class with the highest confidence
class_ids = np.argmax(predictions[:, 4:], axis=1)
# Get bounding boxes for each object
boxes = self.extract_boxes(predictions)
# Apply non-maxima suppression to suppress weak, overlapping bounding boxes
# indices = nms(boxes, scores, self.iou_threshold)
indices = multiclass_nms(boxes, scores, class_ids, self.iou_threshold)
return boxes[indices], scores[indices], class_ids[indices]
def extract_boxes(self, predictions):
# Extract boxes from predictions
boxes = predictions[:, :4]
# Scale boxes to original image dimensions
boxes = self.rescale_boxes(boxes)
# Convert boxes to xyxy format
boxes = xywh2xyxy(boxes)
return boxes
def rescale_boxes(self, boxes):
# Rescale boxes to original image dimensions
input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])
boxes = np.divide(boxes, input_shape, dtype=np.float32)
boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
return boxes
# def draw_detections(self, image, draw_scores=True, mask_alpha=0.4):
#
# return draw_detections(image, self.boxes, self.scores,
# self.class_ids, mask_alpha)
def get_input_details(self):
model_inputs = self.session.get_inputs()
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
self.input_shape = model_inputs[0].shape
self.input_height = self.input_shape[2]
self.input_width = self.input_shape[3]
def get_output_details(self):
model_outputs = self.session.get_outputs()
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
if __name__ == '__main__':
from imread_from_url import imread_from_url
model_path = "../models/yolov8m.onnx"
# Initialize YOLOv8 object detector
yolov8_detector = YOLOv8(model_path, conf_thres=0.3, iou_thres=0.5)
img_url = "https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
img = imread_from_url(img_url)
# Detect Objects
yolov8_detector(img)
# Draw detections
combined_img = yolov8_detector.draw_detections(img)
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
cv2.imshow("Output", combined_img)
cv2.waitKey(0)
③-- utils
import numpy as np
import cv2
class_names = ["ship","plane"]
# Create a list of colors for each class where each color is a tuple of 3 integer values
rng = np.random.default_rng(3)
colors = rng.uniform(0, 255, size=(len(class_names), 3))
def nms(boxes, scores, iou_threshold):
# Sort by score
sorted_indices = np.argsort(scores)[::-1]
keep_boxes = []
while sorted_indices.size > 0:
# Pick the last box
box_id = sorted_indices[0]
keep_boxes.append(box_id)
# Compute IoU of the picked box with the rest
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
# Remove boxes with IoU over the threshold
keep_indices = np.where(ious < iou_threshold)[0]
# print(keep_indices.shape, sorted_indices.shape)
sorted_indices = sorted_indices[keep_indices + 1]
return keep_boxes
def multiclass_nms(boxes, scores, class_ids, iou_threshold):
unique_class_ids = np.unique(class_ids)
keep_boxes = []
for class_id in unique_class_ids:
class_indices = np.where(class_ids == class_id)[0]
class_boxes = boxes[class_indices,:]
class_scores = scores[class_indices]
class_keep_boxes = nms(class_boxes, class_scores, iou_threshold)
keep_boxes.extend(class_indices[class_keep_boxes])
return keep_boxes
def compute_iou(box, boxes):
# Compute xmin, ymin, xmax, ymax for both boxes
xmin = np.maximum(box[0], boxes[:, 0])
ymin = np.maximum(box[1], boxes[:, 1])
xmax = np.minimum(box[2], boxes[:, 2])
ymax = np.minimum(box[3], boxes[:, 3])
# Compute intersection area
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
# Compute union area
box_area = (box[2] - box[0]) * (box[3] - box[1])
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
union_area = box_area + boxes_area - intersection_area
# Compute IoU
iou = intersection_area / union_area
return iou
def xywh2xyxy(x, decimals=2):
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
y = np.copy(x)
y[..., 1] = np.round(x[..., 0] - x[..., 2] / 2,decimals)
y[..., 0] = np.round(x[..., 1] - x[..., 3] / 2,decimals)
y[..., 3] = np.round(x[..., 0] + x[..., 2] / 2,decimals)
y[..., 2] = np.round(x[..., 1] + x[..., 3] / 2,decimals)
np.set_printoptions(suppress=True, precision=decimals)
return y
#
# def draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3):
# det_img = image.copy()
#
# img_height, img_width = image.shape[:2]
# font_size = min([img_height, img_width]) * 0.0006
# text_thickness = int(min([img_height, img_width]) * 0.001)
#
# det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)
#
# # Draw bounding boxes and labels of detections
# for class_id, box, score in zip(class_ids, boxes, scores):
# color = colors[class_id]
#
# draw_box(det_img, box, color)
#
# label = class_names[class_id]
# caption = f'{label} {int(score * 100)}%'
# draw_text(det_img, caption, box, color, font_size, text_thickness)
#
# return det_img
#
#
# def draw_box( image: np.ndarray, box: np.ndarray, color: tuple[int, int, int] = (0, 0, 255),
# thickness: int = 2) -> np.ndarray:
# x1, y1, x2, y2 = box.astype(int)
# return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
#
#
# def draw_text(image: np.ndarray, text: str, box: np.ndarray, color: tuple[int, int, int] = (0, 0, 255),
# font_size: float = 0.001, text_thickness: int = 2) -> np.ndarray:
# x1, y1, x2, y2 = box.astype(int)
# (tw, th), _ = cv2.getTextSize(text=text, fontFace=cv2.FONT_HERSHEY_SIMPLEX,
# fontScale=font_size, thickness=text_thickness)
# th = int(th * 1.2)
#
# cv2.rectangle(image, (x1, y1),
# (x1 + tw, y1 - th), color, -1)
#
# return cv2.putText(image, text, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, font_size, (255, 255, 255), text_thickness, cv2.LINE_AA)
#
# def draw_masks(image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3) -> np.ndarray:
# mask_img = image.copy()
#
# # Draw bounding boxes and labels of detections
# for box, class_id in zip(boxes, classes):
# color = colors[class_id]
#
# x1, y1, x2, y2 = box.astype(int)
#
# # Draw fill rectangle in mask image
# cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)
#
# return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)
④-- __init__.py
from .YOLOv8 import YOLOv8
效果展示 :
下面这个是原项目链接【感谢大佬的项目】
---》 https://github.com/ibaiGorordo/ONNX-YOLOv8-Object-Detection