第四章:数组和矩阵
知识点:
数组(array)是一种线性数据结构,其将相同类型的元素存储在连续的内存空间中。我们将元素在数组中的位置称为该元素的索引(index)。
数组的优点与局限性:
数组存储在连续的内存空间内,且元素类型相同。这种做法包含丰富的先验信息,系统可以利用这些信息来优化数据结构的操作效率。
- 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。
- 支持随机访问:数组允许在 时间内访问任何元素。
- 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓存来提升后续操作的执行速度。
连续空间存储是一把双刃剑,其存在以下局限性。
- 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。
- 长度不可变:数组在初始化后长度就固定了,扩容数组需要将所有数据复制到新数组,开销很大。
- 空间浪费:如果数组分配的大小超过实际所需,那么多余的空间就被浪费了。
数组典型应用
数组是一种基础且常见的数据结构,既频繁应用在各类算法之中,也可用于实现各种复杂数据结构。
- 随机访问:如果我们想随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现随机抽样。
- 排序和搜索:数组是排序和搜索算法最常用的数据结构。快速排序、归并排序、二分查找等都主要在数组上进行。
- 查找表:当需要快速查找一个元素或其对应关系时,可以使用数组作为查找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。
- 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。
- 数据结构实现:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,图的邻接矩阵表示实际上是一个二维数组。
相关考法🌈🌽:
-
数组矩阵