import torch
import numpy as np
import torch.nn as nn
criterion = nn.MSELoss()
data = np.array([[-0.5, 7.7],
[1.8, 98.5],
[0.9, 57.8],
[0.4, 39.2],
[-1.4, -15.7],
[-1.4, -37.3],
[-1.8, -49.1],
[1.5, 75.6],
[0.4, 34.0],
[0.8, 62.3]])
x_data = data[:, 0]
y_data = data[:, 1]
x_train = torch.tensor(x_data, dtype=torch.float32).unsqueeze(1)
y_train = torch.tensor(y_data, dtype=torch.float32)
model = nn.Sequential(nn.Linear(1, 1))
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epoch = 500
for n in range(1, epoch + 1):
y_pred = model(x_train)
loss = criterion(y_pred.squeeze(1), y_train)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if n % 10 == 0 or n == 1:
print(f'Epoch: {n}, Loss: {loss.item()}')
