使用scikit-learn中的KNN包实现对鸢尾花数据集的预测

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

iris = load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

transfer = StandardScaler()

ret_train_data = transfer.fit_transform(X_train)
ret_test_data = transfer.fit_transform(X_test)

k = 5
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train, y_train)

knn.fit(ret_train_data, y_train)

y_pre = knn.predict(ret_test_data)
print("预测值是 : ", y_pre)
print("真实值是 : ", y_test)
score = knn.score(ret_test_data, y_test)
print("预测准确率是 : ", score)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值