题意:
一个矩阵,由W和B组成,求其中一个点,这个点要满足到B的曼哈顿距离的最大值要最小,求出这个点
思路:
通过观察可以发现,一个点到B的最大曼哈顿距离必然是B的左上,左下,右上,右下点,可以任选点进行枚举证明,那就先求出这4个点,然后在枚举每一个点,到这4个点的最大距离的最小值,最后去min, 就是答案,这里找这4个点有一个技巧,找离一个点最近的点,可以通过枚举距离实现,距离从0开始枚举
#include <bits/stdc++.h>
#define endl '\n'
#define IOS ios::sync_with_stdio(false);
using namespace std;
typedef long long ll;
const int N = 1e3 + 10;
int T, n, m;
char w[N][N];
int ltx, lty, lbx, lby, rtx, rty, rbx, rby;
int check(int i, int j) {
int ans = -1;
ans = max(ans, abs(ltx - i) + abs(lty - j));
ans = max(ans, abs(lbx - i) + abs(lby - j));
ans = max(ans, abs(rtx - i) + abs(rty - j));
ans = max(ans, abs(rbx - i) + abs(rby - j));
return ans;
}
int main()
{
IOS; cin.tie(0), cout.tie(0);
cin >> T;
while (T--)
{
cin >> n >> m;
ltx = 1, lty = 1, lbx = 1, lby = 1, rtx = 1, rty = 1, rbx = 1, rby = 1;
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j <= m; ++j)
{
cin >> w[i][j];
}
}
//找到最左上的点
for (int dis = 0; dis <= n + m - 2; ++dis) //dis的最远距离就是在(n, m)点,这个点离他最远距离才n + m - 2
{
for (int i = 1; i <= n; ++i) //从最上面开始找 dis = i + j - 2
{
int j = dis - i + 2;
if (1 <= j && j <= m && w[i][j] == 'B') //说明找到了
{
ltx = i;
lty = j;
goto a;
}
}
}
a: ;
//找左下的点
for (int dis = 0; dis <= n + m - 2; ++dis)
{
for (int i = n; i >= 1; --i) // dis = n - i + j - 1
{
int j = dis + i - n + 1;
if (1 <= j && j <= m && w[i][j] == 'B')
{
lbx = i;
lby = j;
goto b;
}
}
}
b: ;
//找右上的点
for (int dis = 0; dis <= n + m - 2; ++dis)
{
for (int i = 1; i <= n; ++i)
{
int j = i - 1 + m - dis;
if (1 <= j && j <= m && w[i][j] == 'B')
{
rtx = i;
rty = j;
goto c;
}
}
}
c: ;
//找右下的点
for (int dis = 0; dis <= n + m - 2; ++dis)
{
for (int i = n; i >= 1; --i)
{
int j = n - i + m - dis;
if (1 <= j && j <= m && w[i][j] == 'B')
{
rbx = i;
rby = j;
goto d;
}
}
}
d: ;
int ansx = 1, ansy = 1, minn = 1e9;
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j <= m; ++j)
{
int temp = check(i, j);
if (minn > temp)
{
minn = temp;
ansx = i;
ansy = j;
}
}
}
//cout << ltx << " " << lty << " " << lbx << " " << lby << " " << rtx << " " << rty << " " << rbx << " " << rby;
cout << ansx << " " << ansy << endl;
}
return 0;
}