softmax回归是一个多分类模型,但是他跟线性回归一样将输入特征与权重做线性叠加,与线性不同的是他有多个输出,输出的个数对应分类标签的个数,比如四个特征和三种输出动物类别,则权重包含12个标量(带下标的w),偏差包含三个标量(带下标的b),且对每个输入计算o1,o2,o3
然后再对这些输出值进行softmax‘运算,softmax也是单层模型
import torch
from IPython import display
from d2l import torch as d2l
batch_size=256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
#初始化模型参数
num_inputs = 784
num_outputs = 10
w = torch.normal(0,0.01,size=(num_inputs,num_outputs),requires_grad=True)
b = torch.zeros(num_outputs,requires_grad=True)
X = torch.tensor([[1.,2.,3.],[4.,5.,6.]])
X.sum(0,keepdim=True),X.sum(1,keepdim=True)
Output: (tensor([[5., 7., 9.]]),
tensor([[ 6.],
[15.]]))
#定义softmax回归
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1,keepdim=True)
return X_exp/partition#这里应用了广播机制
x= torch.normal(0,1,(2,5))
x_prob= softmax(x)
x_prob,x_prob.sum(1)
Output: (tensor([[0.0902, 0.0850, 0.2683, 0.1946, 0.3619],
[0.0551, 0.4104, 0.2667, 0.1486, 0.1192]]),
tensor([1., 1.]))
#实现softmax回归
def net(X):
return softmax(torch.matmul(X.reshape((-1,w.shape[0])),w)+b)
y = torch.tensor([0,2])
y_hat= torch.tensor([[0.1,0.3,0.6],[0.3,0.3,0.5]])
y_hat[[0,1],y]
Output: tensor([0.1000, 0.5000])
#定义损失函数
def cross_entropy(y_hat,y):
return -torch.log(y_hat[range(len(y_hat)),y])
cross_entropy(y_hat,y)
Output: tensor([2.3026, 0.6931])
#分类精度
def accuracy(y_hat,y):
if(len(y_hat.shape)>1 and y_hat.shape[0]>1):
y_hat=y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) ==y
return float(cmp.type(y.dtype).sum())
accuracy(y_hat,y)/len(y)
Output: 0.5
#我们可以评估任意模型的net的准确率
def evaluate_accuracy(net,data_iter):
if isinstance(net,torch.nn.Module):
net.eval()#将模型设置为评估模式
metric = Accumulator(2)#正确预测数,预测总数,是一个累加的迭代器
for X,y in data_iter:
metric.add(accuracy(net(X),y),y.numel())
return metric[0]/metric[1]
class Accumulator:
def __init__(self,n):
self.data=[0.0]*n
def add(self,*args):
self.data=[a+float(b) for a,b in zip(self.data,args)]
def reset(self):
self.data=[0.0]*len(self.data)
def __getitem__(self,idx):
return self.data[idx]
evaluate_accuracy(net,test_iter)
Output: 0.1196
def train_epoch_ch3(net, train_iter, loss, updater): #@save
"""训练模型一个迭代周期(定义见第3章)"""
# 将模型设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置的优化器和损失函数
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定制的优化器和损失函数
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和训练精度
return metric[0] / metric[2], metric[1] / metric[2]
class Animator: #@save
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
#训练函数
def train_ch3(net,train_iter,test_iter,loss,num_epochs,updater):
animator = Animator(xlabel='epoch',xlim=[1,num_epochs],ylim=[0.3,0.9],
legend=['train loss','train acc','test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net,train_iter,loss,updater)
test_acc=evaluate_accuracy(net,test_iter)
animator.add(epoch+1,train_metrics+(test_acc,))
train_loss,train_acc = train_metrics
# assert train_loss<0.5,train_loss
# assert train_acc <=1 and train_acc>0.7,train_acc
# assert test_acc <=1 and test_acc>0.7,test_acc
lr = 0.1
#设置优化函数
def updater(batch_size):
return d2l.sgd([w,b],lr,batch_size)
num_epochs =10
train_ch3(net,train_iter,test_iter,cross_entropy,num_epochs,updater)
Output:
#预测
def predict_ch3(net,test_iter, n=6):
for X,y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds=d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true + '\n'+pred for true,pred in zip(trues,preds)]
d2l.show_images(X[0:n].reshape((n,28,28)),1,n,titles=titles[0:n])
predict_ch3(net,test_iter)
output: