和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
算法描述
把长度为n的输入序列分成两个长度为n/2的子序列;
对这两个子序列分别采用归并排序;
将两个排序好的子序列合并成一个最终的排序序列。
动图演示

代码实现
public class MergeSort {
public static void main(String[] args) {
int[] array = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};
// 只需要修改成对应的方法名就可以了
mergeSort(array);
System.out.println(Arrays.toString(array));
}
public static void mergeSort(int[] array) {
if (array == null || array.length <= 1) {
return;
}
sort(array, 0, array.length - 1);
}
private static void sort(int[] array, int left, int right) {
if(left==right){
return;
}
int mid=left+(right-left)/2;
sort(array,left,mid);
sort(array,mid+1,right);
merge(array,left,mid,right);
}
private static void merge(int[] array, int left, int mid, int right) {
int[]temp=new int[right=-left+1];
int i=0;
int p1 = left;
int p2 = mid + 1;
while (p1 <= mid && p2 <= right) {
temp[i++] = array[p1] < array[p2] ? array[p1++] : array[p2++];
}
while (p1 <= mid) {
temp[i++] = array[p1++];
}
while (p2 <= right) {
temp[i++] = array[p2++];
}
for (i = 0; i < temp.length; i++) {
array[left + i] = temp[i];
}
}
}