- 维度是一个抽象的概念,特别是用Pytorch的函数表示几维张量的时候。
- 本文将拿 torch.randn 举例,直接观察图像来理解维度。
torch.randn:返回一个张量,包含了从标准正态分布(均值为 0,方差为 1,即高斯白噪声)中抽取一组随机数,形状由可变参数 sizes 定义。
(1)代码示例:
import torch
# 5个参数:5维
# 1个4维(包含2个三维(包含3个2维(包含1个4*5的矩阵)))
obj1 = torch.randn(1, 2, 3, 4, 5)
print(obj1)
# 全部同obj1作比较
obj2 = torch.randn(1, 2, 3, 5, 5)
obj3 = torch.randn(1, 2, 4, 4, 5)
obj4 = torch.randn(1, 3, 3, 4, 5)
obj5 = torch.randn(4, 3, 3, 4, 5)
>>>output (1, 2, 3, 4, 5)
- 一个5维的:包含1个4维的
- 每一个4维:包含2个3维的
- 每一个3维的:包含3个2维的
- 每一个2维的:包含一个4*5的矩阵
tensor([
[[[[-1.5293e+00, 5.2227e-01, -4.7299e-01, 6.7135e-01, 3.1826e-01],
[ 8.3044e-01, -3.3552e-01, -5.6879e-01, -4.7837e-01, 1.2915e+00],
[ 9.9789e-01, -2.1702e-01, -4.1119e-01, 2.1844e-01, -1.6330e-01],
[ 3.1679e-01, 5.0357e-01, 2.1365e+00, 4.3727e-01, -1.0153e+00]],[[ 1.3557e+00, 5.9345e-01, -1.3793e-01, 4.8427e-01, -8.8908e-01],
[ 3.5830e-01, -4.9207e-02, 4.8226e-01, -2.2182e+00, -6.4128e-01],
[-2.0592e-01, 6.3307e-01, -8.1259e-01, -9.2835e-01, -8.5255e-02],
[-2.3460e+00, 5.1155e-01, -1.3851e+00, 3.1141e-01, -1.2196e+00]],[[ 9.8818e-01, -2.3088e-01, 2.2459e+00, 5.6949e-01, -1.4290e+00],
[ 2.1275e-01, -1.6503e-01, 8.6896e-01, 7.2335e-01, -7.9301e-01],
[ 2.7836e-01, 1.8279e+00, 3.6629e-01, -1.5631e+00, 1.1726e+00],
[-9.0304e-02, -9.4225e-01, 6.0920e-01, 2.7713e-01, -8.9930e-01]]],
[[[ 8.9536e-02, 1.8992e-01, -1.1207e-02, 1.0996e+00, 4.9983e-01],
[ 7.2096e-01, -5.8820e-01, 5.7475e-02, 3.4370e-01, -7.3236e-01],
[-9.1615e-01, -1.1692e+00, 4.1488e-01, 2.5893e-01, 9.1055e-01],
[ 3.2392e-01, -1.4574e+00, -3.8527e-01, 3.8142e-01, -5.8768e-01]],[[-2.1255e-01, -9.6286e-01, -9.9566e-01, -2.3782e-01, -3.7024e-01],
[ 7.7646e-01, 1.0851e-01, -2.5495e-01, 4.3544e-01, 1.7299e+00],
[-2.2911e+00, 2.0445e-01, -8.3251e-01, 4.5198e-01, 1.7241e+00],
[-6.0585e-01, -6.0836e-01, 6.9616e-02, 1.4559e+00, -4.3824e-01]],[[ 4.6688e-01, -1.5579e-01, -3.7900e-01, 9.4958e-01, -1.0687e+00],
[ 9.0716e-01, -9.2908e-01, 4.2987e-01, -3.5569e-01, -2.0741e-01],
[-6.4875e-01, -5.9012e-01, -2.3287e-03, -1.9986e+00, 5.2692e-01],
[ 8.8014e-01, 2.2819e-01, 1.0510e+00, 6.2228e-02, -2.7895e-01]]]]])
(2)图像解析
图1 obj1 (1, 2, 3, 4, 5)
图2 obj2(1, 2, 3, 5, 5)
图3 obj3(1, 2, 4, 4, 5)
图4 obj4(1, 3, 3, 4, 5)
图5 obj5(4, 3, 3, 4, 5)
>>>如有疑问,欢迎评论区一起讨论