Softmax回归
利用一些有顺序的类别,可以有分类问题转化为回归问题,分类数据的简单⽅法:独热编码(one-hot encoding)。独热编码是⼀个向量,它的分量和类别⼀样多。类别对应的分量设置为1,其他所有分量设置为0。
为了估计所有可能类别的条件概率,我们需要⼀个有多个输出的模型,每个类别对应⼀个输出。
- 1. softmax运算:
模型的输出yi可以视为属于类i的概率,然后选择具有最⼤输出值的类别argmax(yi)作为我们的预测。
个人理解其实就是输出每个类别可能的概率,然后选取其中概率最大的类别作为最终的预测结果。
- 2. 小批量矢量化:
假设⼀个批量的样本X,其中特征维度(输⼊数量)为d,批量⼤⼩为n。此外,假设我们在输出中有q个类别。则X为(n,d)矢量, W为(d, q)矢量, 输出为(n,q)矢量。偏置b则会因为传播机制扩展成适合样本的矢量。
- 3. 损失函数: 损失函数来度量预测的效果。
sofmax函数给出了⼀个向量y,我们可以将其视为“对给定任意输⼊x的每个类的条件概率”。
交叉熵损失:之前的损失只考虑单个情况,如果考虑到整体结果的分布情况,那么表示形式就和以前不同了,如我们现在⽤⼀个概率向量表⽰,如(0:1; 0:2; 0:7),⽽不是仅包含⼆元项的向量(0; 0; 1)。它是所有标签分布的预期损失值。此损失称为交叉熵损失
- 4. softmax及其导数
导数是我们sofmax模型分配的概率与实际发⽣的情况(由独热标签向量表⽰)之间的差异。从这个意义上讲,这与我们在回归中看到的⾮常相似,其中梯度是观测值y和估计值y^之间的差异。
- 5. 模型性能评估
在训练sofmax回归模型后,给出任何样本特征,我们可以预测每个输出类别的概率。通常我们使⽤预测概率最⾼的类别作为输出类别。如果预测与实际类别(标签)⼀致,则预测是正确的。在接下来的实验中,我们将使⽤精度(accuracy)来评估模型的性能。精度等于正确预测数与预测总数之间的⽐率。
softmax回归实现
、读取部分图片数据并可视化
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
import matplotlib.pyplot as plt
import time
trans = transforms.ToTensor() #实例化
FashionMNIST_Trainset_file = "../data"
FashionMNIST_Testset_file = "../data"
mnist_train = torchvision.datasets.FashionMNIST(root=FashionMNIST_Trainset_file, train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root=FashionMNIST_Trainset_file, train=False, transform=trans, download=True)
print(len(mnist_train), len(mnist_test))
# 获取文本标签
def get_fashion_mnist_labels(labels):
# 获取文本标签
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, titles = None, scale = 1.5): #@save
# 绘制图像列表
figsize = (num_cols * scale, num_rows * scale)
fig, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
ax.imshow(img.numpy())
else:
ax.imshow(img)
ax.axis('off')
if titles:
ax.set_title(titles[i], fontsize=10, loc='center')
plt.show()
train_x, train_y = next(iter(data.DataLoader(mnist_train, batch_size= 18)))
show_images(train_x.reshape(18, 28, 28), 2, 9, titles = get_fashion_mnist_labels(train_y))
、读取小批量数据并计算运行时间
batch_size = 256
""" 使⽤多进程来读取数据 """
def get_dataloader_workers(worker_num = 8):
return worker_num
train_iter = data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers= get_dataloader_workers(8))
time_start = time.time()
for x, y in train_iter:
continue
time_stop = time.time()
def load_data_fashion_mnist(batch_size, resize=None): #@save
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root=FashionMNIST_Trainset_file, train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root=FashionMNIST_Testset_file, train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))
从零开始实现softmax
回想⼀下,实现sofmax由三个步骤组成:
- 对每个项求幂(使⽤exp);
- 对每⼀⾏求和(⼩批量中每个样本是⼀⾏),得到每个样本的规范化常数;
- 将每⼀⾏除以其规范化常数,确保结果的和为1。
# 1. 导入所需库
import torch
from IPython import display
# 2. 构建数据生成器
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
# 3. 初始化模型参数
num_inputs = 28 * 28 # 输入层大小
num_outputs = 10 # 输出层大小
w = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad = True)
b = torch.zeros(num_outputs, requires_grad=True)
# 4. softmax操作定义
def softmax(x):
x_exp = torch.exp(x)
parition = x_exp.sum(1, keepdim=True)
return x_exp / parition
x = torch.normal(0, 1, (2, 5))
X_prob = softmax(x)
X_prob, X_prob.sum(1)
# 5. 定义模型
def net(x):
return softmax(torch.matmul(x.reshape((-1, w.shape[0])), w) + b)
# 6. 定义损失函数:交叉熵损失函数
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[range(len(y_hat)), y]
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
# 7. 模型性能评估
def accuracy(y_hat, y):
# 计算预测正确的数量
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis = 1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
accuracy(y_hat, y) / len(y)
class Accumulator: #@save
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def evaluate_accuracy(net, data_iter): #@save
"""计算在指定数据集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval() # 将模型设置为评估模式
metric = Accumulator(2) # 正确预测数、预测总数
with torch.no_grad():
for x, y in data_iter:
metric.add(accuracy(net(x), y), y.numel())
return metric[0] / metric[1]
# evaluate_accuracy(net, train_iter)
y.numel()
模型训练
def train_epoch_ch3(net, train_iter, loss, updater): #@save
"""训练模型⼀个迭代周期(定义⻅第3章) """
# 将模型设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使⽤定制的优化器和损失函数
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和训练精度
return metric[0] / metric[2], metric[1] / metric[2]
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
"""训练模型(定义⻅第3章) """
# animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
# animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
class Animator: #@save
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: plt.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
lr = 0.1
def updater(batch_size):
return torch.optim.SGD([w, b], lr, batch_size)
num_epochs = 3
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
softmax简易实现
import torch
from torch import nn
# 1. 初始化参数
batch_size = 1000
train_iter, test_iter = load_data_fashion_mnist(batch_size)
input_num = 28 * 28
output_num = 10
num_epochs = 14
net = nn.Sequential(nn.Flatten(), nn.Linear(input_num, output_num))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights)
# 2. 损失函数
loss = nn.CrossEntropyLoss(reduction='none')
# 3. 优化方法
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
def predict_ch3(net, test_iter, n=10): #@save
"""预测标签(定义⻅第3章) """
for X, y in test_iter:
break
trues = get_fashion_mnist_labels(y)
preds = get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
import torch
import torch.nn as nn
import torch.nn.functional as F
from d2l import torch as d2l
net = nn.Sequential(nn.Flatten(),
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10),
)
def init_weight(m):
if type(m) == nn.Linear:
nn.init.kaiming_normal_(m.weight.data, std=0.01)
# net.apply(init_weight);
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
optimer = torch.optim.SGD(net.parameters(), lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, optimer)