%%%%%%%%%%%初始部分,读取图像及计算相关信息%%%%%%%%%%%%%%%%%
clear;
clc;
imgrgb=imread('timg.jpg'); %图像读入
imshow(imgrgb),title('显示真彩色图像');
imggray=imgrgb;
x=rgb2gray(imggray); %将真彩色RGB图像转换成灰度图像
figure;imshow(x),title('显示灰度图像');
%灰度直方图是将数字图像中的所有像素,按照灰度值的大小,统计其出现的频率
figure;imhist(x),title('灰度直方图'); %显示图像灰度直方图
alpha=1; %信息素重要程度因子
beta=5; %启发函数重要程度因子
ant=numel(x); %蚂蚁数目
r=10; %聚类半径
rho=0.1; %信息素挥发因子
ranta=0.9; %隶属度
c=100; %食物源中心(初始聚类中心)
new_m=0; %类集合中所有像素灰度值总和
new_n=0; %类集合中所有像素个数
x=double(x);
%%%%%%%%%%%%%计算蚂蚁i到食物源c的距离%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:ant
distance(i)=sqrt((x(i)-c)^2);
end
%%%%%%%%%%%%%%更新类集合中所有像素与食物源的距离%%%%%%%%%%%%%%%%%%
j=1;
for i=1:ant
if distance(i)<=r;
distance3(j)=distance(i);
j=j+1;
end
end
%%%%%%%%%%%%计算蚂蚁i在路径上放置的信息浓度%%%%%%%%%%%%%%%%%%%%%%
for i=1:ant
if distance(i)<=r;
ph(i)=1;
else
ph(i)=0;
end
end
%%%%%%%%%%%%%%计算各个像素的灰度值与聚类中心的相似度%%%%%%%%%%%%%%%%%
for i=1:ant
if distance(i)==0;
similar(i)=1;
else
similar(i)=r/sqrt((x(i)-c)^2);
end
end
%%%%%%%%%%%%%%计算更新类中所有像素的信息素浓度的调整%%%%%%%%%%%%%%%%%
for i=1:ant
if distance(i)<=r;
new_n=new_n+1;
newph(new_n)=ph(i)*(1-rho^new_n)/(1-rho);
newph1(new_n)=1;
end
end
%%%%%%%%%%%%%%%%计算更新蚂蚁i的相似度的调整%%%%%%%%%%%%%%%%%%%%
for i=1:ant
if distance(i)<=r;
similar1(i)=similar(i);
end
end
similar2=similar1(find(similar1));
%%%%%%%%%%计算更新类集合中所有像素的信息浓度与相似度的调整%%%%%%%%%%%%%%
allsum=newph1.*similar2;
for n=2:new_n
allsum(n)=allsum(n-1)+allsum(n);
end
for n=1:new_n
newallsum(n)=allsum(n)/n;
end
%%%%%%%%%%%%%%%%%%计算概率%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for n=1:new_n
if distance3(n)==0;
newp(n)=1;
else
newp(n)=((newph1(n)^alpha)*(similar2(n)^beta))/newallsum(n);
end
end
%%%%%%%%%%%%%%%计算类间所有像素的灰度值的平均值%%%%%%%%%%%%%%%%%%%
for i=1:ant
if distance(i)<=r;
new_m(i)=x(i);
end
end
new_m1=new_m(find(new_m));
new_m2=0;
new_n2=0;
for n=1:new_n
if newp(n)>ranta;
new_m2=new_m2+new_m1(n);
new_n2=new_n2+1;
end
end
T=new_m2/new_n2;
new_m3=0;
for n=1:new_n
new_m3=new_m3+new_m1(n);
T1=new_m3/new_n;
end
%%%%%%%%%%%%%%%%利用改进蚁群算法进行图像分割%%%%%%%%%%%%%%%%%%%
x=uint8(x);
x1=im2bw(x,T/255);
x1=double(x1);
for j=2:ant
distance1(j)=sqrt((x1(j)-x1(j-1))^2);
end
蚁群算法
最新推荐文章于 2025-05-14 22:21:13 发布