算法题目——多米诺骨牌问题(POJ-2663)

本文探讨了如何解决POJ-2663问题,即在3行n列的棋盘上使用32张多米诺骨牌进行完美覆盖。介绍了当n为偶数时的解题思路,通过递推公式a[i]=4*a[i-2]-a[i-4]来求解不同完美覆盖的总数。适合对算法和递推关系感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:POJ-2663
设有形状一样的多米诺牌,每张牌恰好覆盖棋盘上相邻的两个方格,即一张多米诺牌是一张 1 行 2 列或者 2 行 1 列的牌。那么,是否能够把 32 张多米诺牌摆放到棋盘上,使得任何两张多米诺牌均不重叠,每张多米诺牌覆盖两个方格,并且棋盘上所有的方格都被覆盖住?我们把这样一种排列称为棋盘被多米诺牌完美覆盖。这是一个简单的排列问题,同学们能够很快构造出许多不同的完美覆盖。但是,计算不同的完美覆盖的总数就不是一件容易的事情了。不过,同学们 发挥自己的聪明才智,还是有可能做到的。
在这里插入图片描述
输入

一次输入可能包含多行,每一行分别给出不同的 n 值 ( 即 3 乘 n 棋盘的列数 )。当输入 -1 的时候结束。
n 的值最大不超过 30.
输出

针对每一行的 n 值,输出 3 乘 n 棋盘的不同的完美覆盖的总数。

思路:
设a[i]为N=i时的方法数.i为奇数的时候肯定为0.

如果i为偶数,a[i]可以看成a[i-2]加上两个单位组成的,此时多出来的2单位有3种方法…

也可以看成a[i-4]加上四个单位组成的,此时这四个单位一定是连在一起的,中间不能分割,所以只有两种放法.

同理,可看成a[i-6]加上六个单位组成的,此时这六个单位也连在一起,不能分割,只有两种放法…

直到所有的砖块都是连在一起的,中间不能分割,也只有两种放法.

所以
a[i]=3a[i-2]+2(a[i-4]+a[i-6]+…+a[0]) ①

a[i-2]=3a[i-4]+2(a[i-6]+…a[0]) ②

①-②,得a[i]=4*a[i-2]-a[i-4].
参考文章
POJ 2663 Tri Tiling(完美覆盖)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值