数据结构:常见排序算法(3) -- 交换排序(冒泡排序、快速排序)

本文详细介绍了两种经典的排序算法——冒泡排序和快速排序。冒泡排序通过相邻元素比较实现排序,时间复杂度为O(n^2),具有稳定性。快速排序使用分治思想,平均时间复杂度为O(n*log2n),但最坏情况下可达O(n^2),且为不稳定排序。文中给出了两种排序算法的Java实现,并对比了它们的性能。优化后的快速排序通过三数取中法选取基准值,提高了排序效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1)冒泡排序
①原理:

在无序区间,通过相邻数的比较,将最大的数冒泡到无序区间的最后,持续这个过程,直到数组整体有序

②代码实现:
import java.util.Arrays;
//冒泡排序:  时间复杂度O(n^2)  空间复杂度:O(1)
public class bubbleSort {
    public static void main(String[] args) {
        int[] array={5,8,1,2,5,22,44,15,3,0,48};
        System.out.println(Arrays.toString(array));
        bubble(array);
        System.out.println(Arrays.toString(array));
    }
    public static void bubble(int[] array){
        for (int i = 0; i < array.length - 1; i++) {
            boolean isSorted = true;
            for (int j = 0; j < array.length - i - 1; j++) {
                // 相等不交换,保证稳定性
                if (array[j] > array[j + 1]) {
                    int tmp=array[j];
                    array[j]=array[j+1];
                    array[j+1]=tmp;
                    isSorted = false;
                }
            }
            if (isSorted) {
                break;
            }
        }
    }
}

运行截图:
在这里插入图片描述

③性能分析

在这里插入图片描述**稳定性:**稳定

(2)快速排序
①原理–partition:

1.从待排序区间选择一个数,作为基准值(pivot)
2.Partition: 遍历整个待排序区间,将比基准值小的(可以包含相等的)放到基准值的左边,将比基准值大的(可以包含相等的)放到基准值的右边;
3.采用分治思想,对左右两个小区间按照同样的方式处理,直到小区间的长度 == 1,代表已经有序,或者小区间的长度 == 0,代表没有数据。

在这里插入图片描述
在这里插入图片描述

②代码实现:
import java.util.Arrays;

/**
 * 快速排序  时间复杂度:O(n*log2n)~O(n^2)    空间复杂度:O(log2n)~O(n)
 *稳定性:不稳定
 */
public class quickSort {
  
   //非递归实现
    public static void quSort(int[] array){
        Stack<Integer> stack=new Stack<>();
        int low=0;
        int high=array.length-1;
        int piv=pivot(array,low,high);
        if(piv>low+1){
            stack.push(low);
            stack.push(piv-1);
        }
        if(piv<high-1){
            stack.push(piv+1);
            stack.push(high);
        }
        while(!stack.empty()){
            high=stack.pop();
            low=stack.pop();
            piv=pivot(array,low,high);
            if(piv>low+1){
                stack.push(low);
                stack.push(piv-1);
            }
            if(piv<high-1){
                stack.push(piv+1);
                stack.push(high);
            }
        }
    }
   
    public static void main(String[] args) {
        int[] arr={5,4,1,40,82,12,45,20,0,1};
        System.out.println(Arrays.toString(arr));
        quSort(arr);
        System.out.println(Arrays.toString(arr));

        int[] array=new int[1_0000];
        for (int i = 0; i < array.length; i++) {
            array[i]=i;
        }
        quickSort1(array);
    }
   
    //递归实现快速排序函数
    public static void quickSort1(int[] array){
        quick(array,0,array.length-1);  //接口
    }
    public static void quick(int[] array,int low,int high){
        if(low<high){
            int piv=pivot(array,low,high);
            quick(array,low,piv-1);   //递归实现
            quick(array,piv+1,high); //递归实现
        }
    }
    //找基准的函数
    public static int  pivot(int[] array,int start,int end){
        int tmp=array[start];
        while(start<end){
            while(start<end && array[end]>=tmp){
                end--;
            }
            //把数值赋值给start
            array[start]=array[end];
            while(start<end && array[start]<=tmp){
                start++;
            }
            //把start下标的值给end
            if(start>=end){
                break;
            }else{
                array[end]=array[start];
            }
        }
        array[start]=tmp;
        return start;
    }
}

运行截图:
在这里插入图片描述

优化后代码实现(三数取中法):
/**
 * @Author: XiShanShan
 * @Description:
 * @Date:Created in 20:21 2021/3/30
 * @Modified By:xss666
 */

import java.util.Arrays;

/**
 * 快速排序  时间复杂度:O(n*log2n)~O(n^2)    空间复杂度:O(log2n)~O(n)
 *稳定性:不稳定
 */
public class quickSort {
    public static void main(String[] args) {
        int[] array=new int[1_0000];
        for (int i = 0; i < array.length; i++) {
            array[i]=i;
        }
        quickSort1(array);
    }
    //快速排序函数
    public static void quickSort1(int[] array){
        long startTime=System.currentTimeMillis();
        quick(array,0,array.length-1);  //接口
        long endTime=System.currentTimeMillis();
        System.out.println(endTime-startTime); //输出排序所需要的时间
    }

    public static void swap(int[] array,int k,int i){
        int tmp=array[k];
        array[k]=array[i];
        array[i]=tmp;
    }

    //三数取中法优化
    public static void medianOfThree(int[] array,int low,int high){
        int mid=(low+high)/2;

        if(array[low]<=array[mid]){
            swap(array,low,mid);
        }//mid<=low

        if(array[low]>array[high]){
            swap(array,low,high);
                }//array[low]<=array[high]

        if(array[mid]>array[high]){
            swap(array,mid,high);
        }  //array[mid]<array[high]
    }
    public static void quick(int[] array,int low,int high){
        if(low<high){

            //优化后
            medianOfThree(array,low,high);
            int piv=pivot(array,low,high);
            quick(array,low,piv-1);   //递归实现
            quick(array,piv+1,high);
        }
    }
    //找基准的函数
    public static int  pivot(int[] array,int start,int end){
        int tmp=array[start];
        while(start<end){
            while(start<end && array[end]>=tmp){
                end--;
            }
            //把数值赋值给start
            array[start]=array[end];
            while(start<end && array[start]<=tmp){
                start++;
            }
            //把start下标的值给end
            if(start>=end){
                break;
            }else{
                array[end]=array[start];
            }
        }
        array[start]=tmp;
        return start;
    }
}

优化后的代码排序的速度会大大提高:

将1_0000个数据大小的数组排序后,时间节省了26ms左右

③性能分析

在这里插入图片描述稳定性: 不稳定

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秃头小宝儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值