1.算法简介
1. 𝑘 近邻法是基本且简单的分类与回归方法。 𝑘 近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 𝑘 个最近邻训练实例点,然后利用这 𝑘 个训练实例点的类的多数来预测输入实例点的类。
2. 𝑘 近邻模型对应于基于训练数据集对特征空间的一个划分。 𝑘 近邻法中,当训练集、距离度量、 𝑘 值及分类决策规则确定后,其结果唯一确定。
3. 𝑘 近邻法三要素:距离度量、 𝑘 值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。 𝑘 值小时, 𝑘 近邻模型更复杂; 𝑘 值大时, 𝑘 近邻模型更简单。 𝑘 值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的 𝑘 。
常用的分类决策规则是多数表决,对应于经验风险最小化。
4. 𝑘 近邻法的实现需要考虑如何快速搜索k个最近邻点,并用分类决策规则确定最终点的归类。
距离度量
设特征空间 x x x是 n n n维实数向量空间 , x i , x j ∈ X x_{i}, x_{j} \in \mathcal{X} xi,xj∈X, x i = ( x i ( 1 ) , x i ( 2 ) , ⋯ , x i ( n ) ) T x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(n)}\right)^{\mathrm{T}} xi=(xi(1),xi(2),⋯,xi(n))T, x j = ( x j (