RTAB-MAP的三种测评方法
数据集网址:https://vision.in.tum.de/data/datasets
方法一
http://official-rtab-map-forum.206.s1.nabble.com/How-to-process-RGBD-SLAM-datasets-with-RTAB-Map-td939.html
cd 数据集
1.python associate.py rgb.txt depth.txt生成同步的文件夹rgb_syrc、depth_syrc
associate.py文件地址:https://blog.youkuaiyun.com/Hu_weichen/article/details/91127282?spm=1001.2101.3001.6650.5&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-5.pc_relevant_aa&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-5.pc_relevant_aa&utm_relevant_index=7#commentBox
2.创建校准文件"rgbddatasets.yaml"
%YAML:1.0
camera_name: rgbddatasets
image_width: 0
image_height: 0
camera_matrix:
rows: 3
cols: 3
data: [ 525., 0., 3.1950000000000000e+02, 0., 525.,
2.3950000000000000e+02, 0., 0., 1. ]
distortion_coefficients:
rows: 1
cols: 5
data: [ 0., 0., 0., 0., 0. ]
rectification_matrix:
rows: 3
cols: 3
data: [ 1., 0., 0., 0., 1., 0., 0., 0., 1. ]
projection_matrix:
rows: 3
cols: 4
data: [ 525., 0., 3.1950000000000000e+02, 0., 0., 525.,
2.3950000000000000e+02, 0., 0., 0., 1., 0. ]
3.打开RTAB-Map进行设置:打开“首选项”对话框。单击“重置所有设置”以确保您具有默认值。转到“源”选项卡,选择 RGB-D 作为源类型,将输入速率设置为 30 Hz 或更低,将校准名称设置为“rgbddatasets”(应与之前创建的校准文件同名);向下滚动以选择相机驱动程序的“图像”。填充RGB和深度目录(使用“rgb_sync”和“depth_sync”文件夹),将深度刻度设置为5,选中“使用RGB文件名作为时间戳”,并将“可选时间戳文件”留空;要与基本事实进行更多比较,可以选中“创建中间节点…”在“高级 RTAB-地图设置”面板下。
方法二
rosbag decompress rgbd_dataset_freiburg3_long_office_household.bag
python tum_rename_world_kinect_frame.py rgbd_dataset_freiburg3_long_office_household.bag
roslaunch rtabmap_ros rgbdslam_datasets.launch
rosbag play --clock rgbd_dataset_freiburg3_long_office_household.bag
跑图完成时,导出rgbd格式的pose.txt.
方法三:
cd rtabmap/bin
./rtabmap-rgbd_dataset ~/rtabmap_ws/dataset/rgbd_dataset_freiburg3_long_office_household/rgb /rtabmap_ws/dataset/rgbd_dataset_freiburg1_desk/depth/rtabmap_ws/dataset/rgbd_dataset_freiburg3_long_office_household
(第三个路径是groudtruth所在文件夹位置)
(跑完图后会生成rtabmappose.txt和rtabmap_rmse.txt即测评结果,以及.db文件)
测评
1.在线测评工具:
https://vision.in.tum.de/data/datasets/rgbd-dataset/online_evaluation
2.用evo测评:
evo_traj tum -a -p --ref groundtruth.txt rtabmap_poses.txt -va
evo_ape tum -a -p groundtruth.txt rtabmap_poses.txt -va