深度学习正则化
学习目标
- 目标
- 了解偏差与方差的意义
- 知道L2正则化与L1正则化的数学意义
- 知道Droupout正则化的方法
- 了解早停止法、数据增强法的其它正则化方式
1. 偏差与方差
1.1 数据集划分
首先我们对机器学习当中涉及到的数据集划分进行一个简单的复习
- 训练集(train set):用训练集对算法或模型进行训练过程;
- 验证集(development set):利用验证集(又称为简单交叉验证集,hold-out cross validation set)进行交叉验证,选择出最好的模型;
- 测试集(test set):最后利用测试集对模型进行测试,对学习方法进行评估。
在小数据量的时代,如 100、1000、10000 的数据量大小,可以将数据集按照以下比例进行划分:
- 无验证集的情况:70% / 30%
- 有验证集的情况:60% / 20% / 20%
而在如今的大数据时代