一、本文介绍
🔥本文给大家介绍使用 PATConv 模块改进 YOLOv11 的检测头中,通过并行的卷积和注意力机制,显著提升了检测精度和推理速度。PATConv 增强了特征图通道和空间的交互,能够更有效地捕捉全局信息,尤其在处理小物体、遮挡物体和复杂背景时表现更佳。同时,动态调整计算复杂度的机制提升了模型的适应性和灵活性,使得检测头能够在保证高精度的同时,加快推理速度,优化速度与精度的平衡,特别适用于实时目标检测任务。
专栏改进目录:YOLOv11改进专栏包含卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、C2PSA/C3k2二次创新改进、全网独家创新等创新点改进
全新YOLOv11-发论文改进专栏链接:全新YOLOv11创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文
本文目录
1.首先在ultralytics/nn/newsAddmodules创建一个.py文件
2.在ultralytics/nn/newsAddmodules/__init__.py中引用
五、创建v11Detect_PATHead检测头yaml配置文件
二、PATConv部分注意力卷积介绍

摘要:设计一个模块或机制,使网络在保持较低参数量和FLOPs的同时,不牺牲精度和吞吐量,仍然是一个挑战。为了解决这一挑战并挖掘特征图通道内的冗余,我们提出了一种新方案:部分通道机制(PCM)。具体而言,通过分割操作,特征图通道被划分为不同部分,每部分对应不同操作,如卷积、注意力、池化和恒等映射。基于这一假设,我们引入了一种新颖的部分注意力卷积(PATConv),可以高效地将卷积与视觉注意力结合。我们的研究表明,PATConv可以完全替代常规卷积和常规视觉注意力,同时降低模型参数和FLOPs。此外,PATConv可以衍生出三种新类型的模块:部分通道注意力模块(PAT ch)、部分空间注意力模块(PAT sp)和部分自注意力模块(P
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



