pytorch dataloader学习

import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np 

torch.manual_seed(1)
# 自定义数据集
class CustomDataset(Dataset):
    def __init__(self):
        # 创建一些示例数据(100个样本,每个样本包含10个特征)
        self.data = torch.randn(100, 10)
        self.labels =torch.from_numpy(np.arange(100))  # 二分类标签

    def __len__(self):
        # 返回数据集的大小
        return len(self.data)

    def __getitem__(self, idx):
        # 根据索引 idx 返回对应的样本和标签
        sample = self.data[idx]
        label = self.labels[idx]
        return sample, label

# 创建数据集的实例
dataset = CustomDataset()

# 使用DataLoader加载数据
# 设置batch_size=16,shuffle=True表示打乱数据顺序
dataloader = DataLoader(dataset, batch_size=100, shuffle=True)

# 迭代DataLoader
for i in range(2):
    for batch_idx, (inputs, labels) in enumerate(dataloader):
        print(f"Batch {batch_idx+1}")
        print(f"Inputs: {inputs.size()}")  # 显示当前batch中输入数据的维度
        print(f"Labels: {labels.size()}")  # 显示当前batch中标签的维度
        print(labels)
        # 在这里你可以对数据进行训练
        # 例如:outputs = model(inputs)

只要是shuffle=True,每次epoch结果的顺序是不一样的,如果想每一次的结果是一样的
在这里插入图片描述

如果shuffle=False

import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np 

torch.manual_seed(1)
# 自定义数据集
class CustomDataset(Dataset):
    def __init__(self):
        # 创建一些示例数据(100个样本,每个样本包含10个特征)
        self.data = torch.randn(100, 10)
        self.labels =torch.from_numpy(np.arange(100))  # 二分类标签

    def __len__(self):
        # 返回数据集的大小
        return len(self.data)

    def __getitem__(self, idx):
        # 根据索引 idx 返回对应的样本和标签
        sample = self.data[idx]
        label = self.labels[idx]
        return sample, label

# 创建数据集的实例
dataset = CustomDataset()

# 使用DataLoader加载数据
# 设置batch_size=16,shuffle=True表示打乱数据顺序
dataloader = DataLoader(dataset, batch_size=100, shuffle=True)

# 迭代DataLoader
for i in range(2):
    for batch_idx, (inputs, labels) in enumerate(dataloader):
        print(f"Batch {batch_idx+1}")
        print(f"Inputs: {inputs.size()}")  # 显示当前batch中输入数据的维度
        print(f"Labels: {labels.size()}")  # 显示当前batch中标签的维度
        print(labels)
        # 在这里你可以对数据进行训练
        # 例如:outputs = model(inputs)

结果如下
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值