洛谷P1888 三角函数

洛谷P1888 三角函数


题目描述
输入一组勾股数a,b,c(a≠b≠c),用分数格式输出其较小锐角的正弦值。(要求约分。)

输入格式
一行,包含三个数,即勾股数a,b,c(无大小顺序)。

输出格式
一行,包含一个数,即较小锐角的正弦值

输入输出样例
输入 #1 复制
3 5 4
输出 #1 复制
3/5

说明/提示
数据区间1~10^9

正弦值,即是在一个直角三角形中,某个角的对边与斜边之比值。既然题目要我们求较小角的锐角三角函数值,那根据数学公式的推演可以直接得出,直接用这个直角三角形的最短边除以斜边就得到了。在本题中我们只要做很简单的几件事,那就是,排序,运算,约分。注意好每个地方的细节,最后检验输出就能很简单的AC了!下面附上本人代码:
#include <bits/stdc++.h>
using namespace std;

long gcd(long m, long n){
if(m < n)
{
long temp;
temp = m;
m = n;
n = temp;
}
long k;
while(n != 0)
{
k = m % n;
m = n;
n = k;
}
return m;
}//这是在为约分做铺垫,注意判定有没有公因数,并直接化简
long max(long a,long b)
{
return a>b?a:b;
}//找到斜边
long min(long a,long b)
{
return a<b?a:b;
}//找到最短边
int main()
{
long a,b,c;
cin>>a>>b>>c;
long w=min(min(a,b),c);
long y=max(max(a,b),c);
long x=gcd(w,y);
printf("%ld/%ld",w/x,y/x);//直接根据我们先前定义的函数直接得出答案
return 0;
}

完工!

### 关于洛谷 P5762 的 Python 解法 尽管当前未提供具体针对洛谷 P5762 的直接引用,但可以基于已有的类似问解决方案以及常见的算法思路来推测其可能的实现方式。以下是详细的解答: #### 1. **目分析** 假设洛谷 P5762 是一个涉及数操作或者字符串处理的问(常见类型),通常可以通过以下几种方法解决问: - 使用循环结构遍历数据。 - 利用条件判断筛选符合条件的数据项。 - 如果涉及到复杂逻辑,则可引函数封装。 对于此类问,Python 提供了丰富的内置功能支持,例如列表推导式[^3] 和多维数操作等工具可以帮助简化代码并提高效率。 #### 2. **通用解框架** 下面展示一种适用于大多数输输出型竞赛目的模板化程序设计模式: ```python def solve_problem(): # 获取用户输 n = int(input()) result = [] for _ in range(n): data = input().strip() # 对每条记录执行特定计算逻辑 processed_data = process(data) result.append(processed_data) # 批量打印最终结果 for res in result: print(res) def process(data): """定义具体的业务逻辑""" # 假设这里需要解析data中的某些字段,并返回一个新的 value = sum(map(int, filter(str.isdigit, data))) # 示例:提取所有数字求和 return f"{value:02d}" if __name__ == "__main__": solve_problem() ``` 上述脚本展示了如何读取标准输流、逐行处理每一笔资料后再统一输出答案的过程。其中`process()` 函数代表实际应用里会依据不同需求定制的具体运算规则[^4]。 #### 3. **特殊情况考虑** 如果该问是关于图形绘制(比如形成某种图案),那么可以根据给定参数动态调整输出样式。例如构建一个由指定字符构成的直角三角形形状时,需注意边界填充与格式保持一致等问[^5]: ```python n = int(input()) for i in range(1,n+1): line=''.join([f'{j:02}'[-2:] for j in range(i)]) print(line.rjust(len(f'{n}'), ' ')) ``` 此段代码片段实现了创建具有固定宽度列间距效果的右对齐数字金字塔图案的功能。 --- ### 总结说明 以上仅作为参考模型之一,在真正面对新挑战之前还需要仔细阅读官方描述文档以明确确切的任务目标。如果有更详尽的信息披露出来之后再做进一步优化也不迟疑!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值