习题练习
微分方程模型
判断题
实际系统都能够线性近似。
线性系统满足叠加性和齐次性。
不同的物理系统可以有相同的数学模型。
以系统模型为基础,可以用仿真手段研究系统行为。
仅仅依据数据和算法,无法建立系统的数学模型。
输入输出关系为y=mx+b的系统是线性系统。
×√√√××
计算题
计算注意事项
一般是KVL为主,辅助KCL消元。
解题时, u i u_i ui和 u o u_o uo差值的最简单的回路很重要,因为要得到某一个电流和差值的关系,便于化简,若是没有这一关系,化简到最后,很容易变成 u i u_i ui和 u o u_o uo与分别某一个电流的高阶微分方程的关系,导致最后一个电流很难消掉(就是这一个坎,你一消,就结束了,但你看着这个式子就是很头疼), u i u_i ui和 u o u_o uo的差值与哪个支路电流有关,最后总的方程式就往哪里消即可。
我一开始没有注意到这一点,每道题都耗费了大量的时间。
电路数学模型的建立
求导之后进行了下面这些步骤
R 1 C 2 u 0 ′ = R 1 R 2 C 1 C 2 ( u 2 ′ ′ − u 0 ′ ′ ) + R 2 C 2 ( u i ′ − u 0 ′ ) + R 1 C 1 ( u i ′ − u 0 ′ ) + u i − u 0 \begin{aligned} R_{1}C_2 u_{0}^{\prime}=R_{1} R_{2} C_{1} C_{2}\left(u_{2}^{\prime \prime}-u_{0}^{\prime \prime}\right)+R_{2} C_{2}\left(u_{i}^{\prime}-u_{0}^{\prime}\right) \\ +R_{1} C_{1}\left(u_{i}^{\prime}-u_{0}^{\prime}\right)+u_{i}-u_{0} \end{aligned} R1C2u0′=R1R2C1C2(u2′′−u0′′)+R2C2(ui′−u0′)+R1C1(ui′−u0′)+ui−u0
移项有
R 1 R 2 C 1 C 2 u 0 ′ ′ + ( R 1 C 1 + R 1 C 2 + R 2 C 2 ) u 0 ′ + u 0 = R 1 R 2 C 1 C 2 u i ′ ′ + ( R 1 C 1 + R 2 C 2 ) u i ′ + u i \begin{aligned} & R_{1} R_{2} C_{1} C_2 u_{0}^{\prime \prime}+(R_{1} C_{1}+R_{1} C_{2}+R_{2}C_2) u_{0}^{\prime}+u_{0}\\=& R_{1} R_{2} C_{1} C_{2} u_{i}^{\prime \prime}+\left(R_{1} C_{1}+R_{2}C_2) u_{i}^{\prime}+u_{i}\right.\end{aligned} =R1R2C1C2u0′′+(R1C1+R1C2+R2C2)u0′+u0R1R2C1C2ui′′+(R1C1+R2C2)ui′+ui
两边取Laplace变换有
R 1 R 2 C 1 C 2 s 2 U 0 + ( R 1 C 1 + R 1 C 2 + R 2 C 2 ) U 0 + U 0 R_{1} R_{2} C_{1} C_{2} s^{2} U_{0}+\left(R_{1} C_{1}+R_{1}C_2+R_{2} C_{2}\right) U_{0}+U_{0} R1R2C1C2s2U0+(R1C1+R1C2+R2C2)U0+U0
= R 1 R 2 C 1 C 2 s 2 U I + ( R 1 C 1 + R 2 C 2 ) s + U I =R_{1} R_{2}C_{1} C_{2} s^{2} U_{I}+\left(R_{1} C_{1}+R_{2}C_2) s+U_{I}\right. =R1R2C1C2s2UI+(R1C1+R2C2)s+UI
移项化简
U 0 U 1 = R 1 R 2 C 1 C 2 s 2 + ( R 1 C 1 + R 2 C 2 ) s + 1 R 1 R 2 C 1 C 2 s 2 + ( R 1 C 1 + R 1 C 2 + R 2 C 2 s ) + 1 \frac{U_{0}}{U_{1}}=\frac{R_{1} R_{2} C_{1} C_2 s^{2}+(R_{1} C_{1}+R_{2}C_2) s+1}{R_{1} R_{2} C_{1} C_{2} s^{2}+\left(R_{1} C_{1}+R_{1}C_2+R_{2} C_{2}s\right)+1} U1U0=R1R2C1C2s2+(R1C1+R1C2+R2C2s)+1R1R2C1C2s2+(R1C1+R2C2)s+1
我们再用阻抗方法进行验证, ji
G a ( s ) = U o ( s ) U i ( s ) = R 2 + 1 C 2 s R 1 ⋅ 1 C 1 s R 1 + 1 C 1 s + ( R 2 + 1 C 2 s ) = R 1 R 2 C 1 C 2 s 2 + ( R 1 C 1 + R 2 C 2 ) s + 1 R 1 R 2 C 1 C 2 s 2 + ( R 1 C 1 + R 2 C 2 + R 1 C 2 ) s + 1 \begin{aligned} &G_{a}(s)=\frac{U_{o}(s)}{U_{i}(s)}=\frac{R_{2}+\frac{1}{C_{2} s}}{\frac{R_{1} \cdot \frac{1}{C_{1} s}}{R_{1}+\frac{1}{C_{1} s}}+\left(R_{2}+\frac{1}{C_{2} s}\right)} \\ &=\frac{R_{1} R_{2} C_{1} C_{2} s^{2}+\left(R_{1} C_{1}+R_{2} C_{2}\right) s+1}{R_{1} R_{2} C_{1} C_{2} s^{2}+\left(R_{1} C_{1}+R_{2} C_{2}+R_{1} C_{2}\right) s+1} \end{aligned} Ga(s)=Ui(s)Uo(s)=R1+C1s1R1⋅C1s1+(R2+C2s1)R2+C2s1=R1R2C1C2s2+(R1C1+R2C2+R1C2)s+1R1R2C1C2s2+(R1C1+R2C2)s+1
阻抗方法算的时候要格外小心,很容易发生计算错误,我在算这道题的时候算了四遍才对,当然可能只是因为我个人太粗心了,如果足够熟练也可以一步化简到位。
我们发现结果是一样的
对于图 示的无源网络,设通过电阻 R 1 R_{1} R1 的电流为 i 1 i_{1} i1 (方向自左向右),通过电容 C C C 的电流为 i 2 i_{2} i2 (方向自左向右),通过电阻 R 2 R_{2} R2 的电流为 i i i (方向自上向下 ) ) ),根据电压平衡可得
于是
{ R 1 i 1 = 1 C ∫ i 2 d t u o = R 2 i = R 2 ( i 1 + i 2 ) u i = R 1 i 1 + u o i 1 = u i − u o R 1 , i 2 = R 1 C d i 1 d t = R 1 C ⋅ 1 R 1 ⋅ d ( u i − u o ) d t \left\{\begin{array}{l} R_{1} i_{1}=\frac{1}{C} \int i_{2} \mathrm{d} t \\ u_{o}=R_{2} i=R_{2}\left(i_{1}+i_{2}\right) \\ u_{i}=R_{1} i_{1}+u_{o} \\ i_{1}=\frac{u_{i}-u_{o}}{R_{1}}, \quad i_{2}=R_{1} C \frac{\mathrm{d} i_{1}}{\mathrm{d} t}=R_{1} C \cdot \frac{1}{R_{1}} \cdot \frac{\mathrm{d}\left(u_{i}-u_{o}\right)}{\mathrm{d} t} \end{array}\right. ⎩⎪⎪⎨⎪⎪⎧R1i1=C1∫i2dtuo=R2i=R2(i1+i2)ui=R1i1+uoi1=R1ui−uo,i2=R1Cdtdi1=R1C⋅R11⋅dtd(ui−uo)
从而 u o = R 2 i = R 2 [ u i − u o R 1 + R 1 C ⋅ 1 R 1 ⋅ d ( u i − u o ) d t ] \quad u_{o}=R_{2} i=R_{2}\left[\frac{u_{i}-u_{o}}{R_{1}}+R_{1} C \cdot \frac{1}{R_{1}} \cdot \frac{\mathrm{d}\left(u_{i}-u_{o}\right)}{\mathrm{d} t}\right] uo=R2i=R2[R1ui−uo+R1C⋅R11⋅dtd(ui−uo)]
整理后可得图 2 − 49 ( 2-49( 2−49( a ) 所示的无源网络的微分方程为
R 1 R 2 C d u o d t + ( R 1 + R 2 ) u o = R 1 R 2 C d u i d t + R 2 u i R_{1} R_{2} C \frac{\mathrm{d} u_{o}}{\mathrm{d} t}+\left(R_{1}+R_{2}\right) u_{o}=R_{1} R_{2} C \frac{\mathrm{d} u_{i}}{\mathrm{d} t}+R_{2} u_{i} R1R2Cdtduo+(R1+R2)uo=R1R2Cdtdui+R2ui
对于图示的无源网络,设通过左侧电阻 R R R 的电流为 i 1 i_{1} i1 (方向自左向右), 通过右侧电阻 R R R 的电流为 i 2 ( i_{2}( i2( 方向自右向左 ) ) ),通过电容 C 1 C_{1} C1 的电流为 i 2 i_{2} i2 (方向自左向右),通 过电容 C 2 C_{2} C2 的电流为 i i i (方向自上向下 ) ) ),根据电压平衡可得
{ R i 1 = R i 2 + 1 C 1 ∫ i 2 d t u i = 1 C 1 ∫ i 2 d t + u o u o = R i 2 + 1 C 2 ∫ i d t \left\{\begin{array}{l} R i_{1}=R i_{2}+\frac{1}{C_{1}} \int i_{2} \mathrm{d} t \\ u_{i}=\frac{1}{C_{1}} \int i_{2} \mathrm{d} t+u_{o} \\ u_{o}=R i_{2}+\frac{1}{C_{2}} \int i \mathrm{d} t \end{array}\right. ⎩⎨⎧Ri1=Ri2+C11∫i2dtui=