import math
import numpy as np
import tensorflow as tf
from keras import backend
from keras import backend as K
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.layers import (Activation, Add, Conv2D, Dense, DepthwiseConv2D,
Dropout, GlobalAveragePooling2D, GlobalMaxPooling2D,
Input, Lambda, MaxPooling2D, ZeroPadding2D,Reshape,Multiply)
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.preprocessing import image
from keras.utils.data_utils import get_file
alpha = 1
def relu6(x):
# 定义relu6激活函数: relu6 = min(max(0, x), 6)
return K.relu(x, max_value=6.0)
def hard_swish(x):
return x*K.relu(x+3.0, max_value=6.0)/6.0
def return_activation(x, nl, block_id=0,conv_flag=True):
if conv_flag:
if nl == "HS":
x = Activation(hard_swish,name="cba_%d_hs" % block_id)(x)
if nl == "RE":
x = Activation(relu6,name="cba_%d_re" % block_id)(x)
return x
else:
if nl == "HS":
x = Activation(hard_swish,name="bneck%d_cba_hs" % block_id)(x)
if nl == "RE":
x = Activation(relu6,name="bneck%d_cba_re" % block_id)(x)
return x
def conv_block(inputs, filters, kernel, strides, nl, block_id=0,conv_flag=True):
channel_axis = 1 if K.image_data_format()=='channels_first' else -1
if conv_flag:
x = Conv2D(filters, kernel, padding='same', strides=strides,kernel_initializer='random_uniform',
name="cba_%d_c" % block_id)(inputs)
x = BatchNormalization(axis=channel_axis,name=
mobilenet_v3
最新推荐文章于 2025-01-18 09:58:09 发布
该博客详细介绍了如何使用Keras构建MobileNet V3模型,包括定义激活函数、卷积块、瓶颈层和注意力机制等关键组件。模型结构从160x160x3输入开始,通过一系列卷积和深度可分离卷积操作,最后进行全局平均池化、全连接层和Softmax激活,得到128维的特征向量。整个网络设计考虑了通道数的增减、步长的选择和注意力机制的应用,旨在提高模型的效率和准确性。

最低0.47元/天 解锁文章
753

被折叠的 条评论
为什么被折叠?



