mobilenet_v3

该博客详细介绍了如何使用Keras构建MobileNet V3模型,包括定义激活函数、卷积块、瓶颈层和注意力机制等关键组件。模型结构从160x160x3输入开始,通过一系列卷积和深度可分离卷积操作,最后进行全局平均池化、全连接层和Softmax激活,得到128维的特征向量。整个网络设计考虑了通道数的增减、步长的选择和注意力机制的应用,旨在提高模型的效率和准确性。
import math

import numpy as np
import tensorflow as tf
from keras import backend
from keras import backend as K
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.layers import (Activation, Add, Conv2D, Dense, DepthwiseConv2D,
                          Dropout, GlobalAveragePooling2D, GlobalMaxPooling2D,
                          Input, Lambda, MaxPooling2D, ZeroPadding2D,Reshape,Multiply)
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras.preprocessing import image
from keras.utils.data_utils import get_file

alpha = 1

def relu6(x):
#     定义relu6激活函数: relu6 = min(max(0, x), 6)
    return K.relu(x, max_value=6.0)

def hard_swish(x):
    return x*K.relu(x+3.0, max_value=6.0)/6.0

def return_activation(x, nl, block_id=0,conv_flag=True):
    if conv_flag:
        if nl == "HS":
            x = Activation(hard_swish,name="cba_%d_hs" % block_id)(x)
        if nl == "RE":
            x = Activation(relu6,name="cba_%d_re" % block_id)(x)   
        return x
    else:
        if nl == "HS":
            x = Activation(hard_swish,name="bneck%d_cba_hs" % block_id)(x)
        if nl == "RE":
            x = Activation(relu6,name="bneck%d_cba_re" % block_id)(x)   
        return x

def conv_block(inputs, filters, kernel, strides, nl, block_id=0,conv_flag=True):
    channel_axis = 1 if K.image_data_format()=='channels_first' else -1
    if conv_flag:
        x = Conv2D(filters, kernel, padding='same', strides=strides,kernel_initializer='random_uniform',
								name="cba_%d_c" % block_id)(inputs)
        x = BatchNormalization(axis=channel_axis,name=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值