每个Kaggle冠军的获胜法门:揭秘Python中的模型集成

集成方法案例

集成方法可将多种机器学习模型的预测结果结合在一起,获得单个模型无法匹敌的精确结果,它已成为几乎所有 Kaggle 竞赛冠军的必选方案。那么,我们该如何使用 Python 集成各类模型呢?本文作者,曼彻斯特大学计算机科学与社会统计学院的在读博士 Sebastian Flennerhag 对此进行了一番简述。

在 Python 中高效堆叠模型

集成(ensemble)正在迅速成为应用机器学习最热门和流行的方法。目前,几乎每一个 Kaggle 冠军的解决方案都使用了集成,很多数据科学 pipeline 也使用集成。

简单来说,集成把不同模型的预测结果结合起来,生成最终预测,集成的模型越多,效果就越好。另外,由于集成结合了不同的基线预测,它们的性能至少等同于最优的基线模型。集成使得我们几乎免费就获得了性能提升!

https://mp.weixin.qq.com/s/yY_-qJoza2xGRqrm40abkg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值