z变换:
z变换:X(z)=Z[x(n)]=f(t)=∑n=−∞∞x(n)z−nX(z)=\mathscr{Z}[x(n)]=f(t)=\sum_{n=-\infty}^{\infty}x(n)z^{-n}X(z)=Z[x(n)]=f(t)=∑n=−∞∞x(n)z−n
逆z变换*:x(n)=12πj∮cX(z)zn−1dzx(n)=\frac{ 1 }{2\pi j }\oint _cX(z)z^{n-1}dzx(n)=2πj1∮cX(z)zn−1dz
单边z变换:X(z)=∑n=0∞x(n)z−n=x(0)+x(1)z+x(2)z2+...X(z)=\sum_{n=0}^{\infty}x(n)z^{-n}=x(0)+\frac{x(1)}{z }+\frac{x(2)}{z^2}+...X(z)=∑n=0∞x(n)z−n=x(0)+zx(1)+z2x(2)+...
常用单边z变换:
1、单位样值信号:δ(n)={1(n=0)0(n≠0)δ(n)\delta (n)=\begin{cases} 1 (n=0)\\ 0 (n\neq0) \end{cases} \delta (n)δ(n)={1(n=0)0(n̸=0)δ(n)←\leftarrow←→1\rightarrow1→1
2、单位阶跃信号:μ(n)={1(n≥0)0(n<0)μ(n)\mu (n)=\begin{cases} 1 (n\geq0)\\ 0 (n<0) \end{cases} \mu (n)μ(n)={1(n≥0)0(n<0)μ(n)←\leftarrow←→zz−1,∣z∣>1\rightarrow\frac{z}{z-1},|z|>1→z−1z,∣z∣>1
3、矩阵序列: RN(n)={1(0≤n≤N−1)0(n<0,n≥N)R_N(n)=\begin{cases} 1 (0 \leq n \leq N-1)\\ 0 (n<0,n \geq N) \end{cases}RN(n)={1(0≤n≤N−1)0(n<0,n≥N)
4、斜变信号: x(n)=nμ(n)x(n)=n\mu(n)x(n)=nμ(n) nμ(n)n\mu(n)nμ(n)←\leftarrow←→z(z−1)2,∣z∣>1\rightarrow\frac{ z }{(z-1)^2},|z|>1→(z−1)2z,∣z∣>1
5、指数信号: x(n)=anμ(n)x(n)=a^n\mu(n)x(n)=anμ(n) anμ(n)a^n\mu(n)anμ(n)←\leftarrow←→zz−a,∣z∣>∣a∣⇒{ejω0nμ(n)←→zz−ejω0.∣z∣>1e−jω0nμ(n)←→zz−e−jω0.∣z∣>1\rightarrow\frac{ z }{z-a},|z|>|a|\Rightarrow\begin{cases} e^{j\omega_0n}\mu(n)\leftarrow\rightarrow\frac{z}{z-e^{j\omega_0}}.|z|>1\\ e^{-j\omega_0n}\mu(n)\leftarrow\rightarrow\frac{z}{z-e^{-j\omega_0}}.|z|>1 \end{cases}→z−az,∣z∣>∣a∣⇒{ejω0nμ(n)←→z−ejω0z.∣z∣>1e−jω0nμ(n)←→z−e−jω0z.∣z∣>1
6、正弦、余弦序列: cos(ω0n)μ(n)=12(ejω0n+e−jω0n)μ(n)cos(\omega_0n)\mu(n)=\frac{ 1 }{2}(e^{j\omega_0n}+e^{-j\omega_0n})\mu(n)cos(ω0n)μ(n)=21(ejω0n+e−jω0n)μ(n)←\leftarrow←→12(zz−ejω0+\rightarrow \frac{ 1 }{2}(\frac{ z }{z-e^{j\omega_0}}+→21(z−ejω0z+zz−e−jω0)=z(z−cosω0)z2−2zcosω0+1,∣z∣>1\frac{ z }{z-e^{-j\omega_0}})=\frac{ z(z-cos\omega_0) }{z^2-2zcos\omega_0+1},|z|>1z−e−jω0z)=z2−2zcosω0+1z(z−cosω0),∣z∣>1
sin(ω0n)μ(n)=12j(ejω0n−e−jω0n)μ(n)sin(\omega_0n)\mu(n)=\frac{ 1 }{2j}(e^{j\omega_0n}-e^{-j\omega_0n})\mu(n)sin(ω0n)μ(n)=2j1(ejω0n−e−jω0n)μ(n)←\leftarrow←→12j(zz−ejω0−\rightarrow \frac{ 1 }{2j}(\frac{ z }{z-e^{j\omega_0}}-→2j1(z−ejω0z−zz−e−jω0)=zsinω0z2−2zcosω0+1,∣z∣>1\frac{ z }{z-e^{-j\omega_0}})=\frac{ zsin\omega_0 }{z^2-2zcos\omega_0+1},|z|>1z−e−jω0z)=z2−2zcosω0+1zsinω0,∣z∣>1
⟹{cos(πn2)μ(n)←→z2z2+1,∣z∣>1sin(πn2)μ(n)←→zz2+1,∣z∣>1\Longrightarrow\begin{cases} cos(\frac{\pi n}{2})\mu(n) \leftarrow\rightarrow\frac{z^2}{z^2+1},|z|>1\\sin(\frac{\pi n}{2})\mu(n) \leftarrow\rightarrow\frac{z}{z^2+1},|z|>1 \end{cases}⟹{cos(2πn)μ(n)←→z2+1z2,∣z∣>1sin(2πn)μ(n)←→z2+1z,∣z∣>1
常用性质:
线性:ax(n)+by(n)ax(n)+by(n)ax(n)+by(n)
位移:单边:{x(n−m)μ(n−m)←→X(z)z−mx(n−m)μ(n)←→z−m[X(z)+∑r=−m−1x(r)z−r]x(n+m)μ(n)←→zm[X(z)−∑r=0m−1x(r)z−r]\begin{cases} x(n-m)\mu(n-m)\leftarrow\rightarrow X(z)z^{-m}\\ x(n-m)\mu(n)\leftarrow\rightarrow z^{-m}[X(z)+\sum_{r=-m}^{-1}x(r)z^{-r}] \\x(n+m)\mu(n)\leftarrow\rightarrow z^{m}[X(z)-\sum_{r=0}^{m-1}x(r)z^{-r}] \end{cases}⎩⎪⎨⎪⎧x(n−m)μ(n−m)←→X(z)z−mx(n−m)μ(n)←→z−m[X(z)+∑r=−m−1x(r)z−r]x(n+m)μ(n)←→zm[X(z)−∑r=0m−1x(r)z−r]
双边:{x(n−m)←→z−mX(z)x(n+m)←→zmX(z)\begin{cases} x(n-m)\leftarrow\rightarrow z^{-m}X(z)\\ x(n+m)\leftarrow\rightarrow z^{m}X(z) \\ \end{cases}{x(n−m)←→z−mX(z)x(n+m)←→zmX(z)
常用:{x(n−1)μ(n)←→z−1X(z)+x(−1)x(n−2)μ(n)←→z−2X(z)+z−1x(−1)+x(−2)\begin{cases} x(n-1)\mu(n)\leftarrow\rightarrow z^{-1}X(z)+x(-1)\\ x(n-2)\mu(n)\leftarrow\rightarrow z^{-2}X(z)+z^{-1}x(-1)+x(-2) \\ \end{cases}{x(n−1)μ(n)←→z−1X(z)+x(−1)x(n−2)μ(n)←→z−2X(z)+z−1x(−1)+x(−2)
{x(n+1)μ(n)←→zX(z)−zx(0)x(n+2)μ(n)←→z2X(z)−z2x(0)−zx(1)\begin{cases} x(n+1)\mu(n)\leftarrow\rightarrow zX(z)-zx(0)\\ x(n+2)\mu(n)\leftarrow\rightarrow z^{2}X(z)-z^{2}x(0)-zx(1) \\ \end{cases}{x(n+1)μ(n)←→zX(z)−zx(0)x(n+2)μ(n)←→z2X(z)−z2x(0)−zx(1)
线性加权(z域微分):nx(n)←→−zddzX(z)⇒nmx(n)←→[−zddz]mX(z)nx(n) \leftarrow\rightarrow -z \frac{d}{dz}X(z) \Rightarrow n^{m}x(n)\leftarrow\rightarrow[-z \frac{d}{dz}]^{m}X(z)nx(n)←→−zdzdX(z)⇒nmx(n)←→[−zdzd]mX(z)
指数加权(z域尺度变换):anx(n)←→X(za)(Rx1<∣za∣<Rx2)⇒{a−nx(n)←→X(az),Rx1<∣az∣<Rx2(−1)nx(n)←→X(−z),Rx1<∣z∣<Rx2a^{n}x(n) \leftarrow\rightarrow X( \frac{z}{a})(R_{x1}<|\frac{z}{a}|<R_{x2 }) \Rightarrow \begin{cases} a^{-n}x(n) \leftarrow\rightarrow X(az), R_{x1}<|az| <R_{x2} \\ (-1)^nx(n) \leftarrow\rightarrow X(-z), R_{x1}<|z| <R_{x2}\end{cases}anx(n)←→X(az)(Rx1<∣az∣<Rx2)⇒{a−nx(n)←→X(az),Rx1<∣az∣<Rx2(−1)nx(n)←→X(−z),Rx1<∣z∣<Rx2
初值定理:若x(n)为因果序列:x(0)=limz→∞X(z)x(0)=\lim_{z\rightarrow \infty } X(z)x(0)=limz→∞X(z)
终值定理:若x(n)为因果序列:limn→∞x(n)=limz→1[(z−1)X(z)]\lim_{n\rightarrow \infty } x(n)=\lim_{z\rightarrow 1}[(z-1)X(z)]limn→∞x(n)=limz→1[(z−1)X(z)] 只有当n→∞时,x(n)收敛,才可应用终值定理(即X(z)在单位圆内)只有当n\rightarrow \infty时,x(n)收敛,才可应用终值定理(即X(z)在单位圆内)只有当n→∞时,x(n)收敛,才可应用终值定理(即X(z)在单位圆内)
时域卷积定理:x(n)∗h(n)←→X(z).H(z)收敛域为两者重叠部分x(n)*h(n)\leftarrow\rightarrow X(z).H(z)收敛域为两者重叠部分x(n)∗h(n)←→X(z).H(z)收敛域为两者重叠部分
收敛域:不同收敛域对应原函数不同,如{anμ(n)←→zz−a,∣z∣>∣a∣−anμ(−n−1)←→zz−a,∣z∣<∣a∣\begin{cases} a^n\mu(n)\leftarrow\rightarrow\frac{z}{z-a},|z|>|a|\\ -a^n\mu(-n-1)\leftarrow\rightarrow\frac{z}{z-a},|z|<|a|\end{cases}{anμ(n)←→z−az,∣z∣>∣a∣−anμ(−n−1)←→z−az,∣z∣<∣a∣
(1)有限长n1n_1n1≤\leq≤ n ≤\leq≤n2n_2n2:nx(n){(a):n1<0,n2>0时,0<∣z∣<∞(b):n2≤0时,∣z∣<∞(c):n1≥0时,0<∣z∣nx(n) \begin{cases} (a):n_1<0,n_2>0时,0<|z|<\infty\\ (b):n_2\leq0时,|z|<\infty\\ (c):n_1\geq0时,0<|z|\end{cases}nx(n)⎩⎪⎨⎪⎧(a):n1<0,n2>0时,0<∣z∣<∞(b):n2≤0时,∣z∣<∞(c):n1≥0时,0<∣z∣
(2)右边序列n≥n1n\geq n_1n≥n1:{(a):n1≥0时,Rx1<∣z∣(b):n1<0时,Rx1<∣z∣<∞,其中Rx1=limn→∞∣x(n)∣n\begin{cases} (a):n_1\geq0时,R_{x1}<|z|\\ (b):n_1<0时,R_{x1}<|z|<\infty\end{cases},其中R_{x1}=\lim_{n\rightarrow \infty}\sqrt[n]{|x(n)|}{(a):n1≥0时,Rx1<∣z∣(b):n1<0时,Rx1<∣z∣<∞,其中Rx1=limn→∞n∣x(n)∣
(3)左边序列n≤n2n\leq n_2n≤n2:{(a):n2≤0时,∣z∣<Rx2(b):n2>0时,0<∣z∣<Rx2,其中Rx2=1limn→∞∣x(−n)∣n\begin{cases} (a):n_2\leq0时,|z|<R_{x2}\\ (b):n_2>0时,0<|z|<R_{x2}\end{cases},其中R_{x2}= \frac {1}{lim_{n\rightarrow \infty}\sqrt[n]{|x(-n)|}}{(a):n2≤0时,∣z∣<Rx2(b):n2>0时,0<∣z∣<Rx2,其中Rx2=limn→∞n∣x(−n)∣1
(4)双边序列:有X(z)=∑n=−∞−1x(n)z−n+∑n=0∞x(n)z−n\sum_{n=-\infty}^{-1} x(n)z^{-n}+\sum_{n=0}^{\infty}x(n)z^{-n}∑n=−∞−1x(n)z−n+∑n=0∞x(n)z−n:若Rx2<Rx1,则X(z)不收敛;若Rx2>Rx1,则Rx1<∣z∣<Rx2若R_{x2}<R_{x1},则X(z)不收敛;若R_{x2}>R_{x1},则R_{x1}<|z|<R_{x2}若Rx2<Rx1,则X(z)不收敛;若Rx2>Rx1,则Rx1<∣z∣<Rx2
部分分式展开法:先将X(z)z展开,然后每个分式X(z)⇒∑zz−zn,下面常用逆z变换对:\frac{X(z)}{z}展开,然后每个分式X(z)\Rightarrow\sum\frac{z}{z-z_{n}},下面常用逆z变换对:zX(z)展开,然后每个分式X(z)⇒∑z−znz,下面常用逆z变换对:
X(z)X(z)X(z) |z|>|a|,即右序列 |z|<|a|,即左序列
zz−1\frac{z}{z-1}z−1z μ(n)\mu(n)μ(n) −μ(−n−1)-\mu(-n-1)−μ(−n−1)
z(z−1)2\frac{z}{(z-1)^2}(z−1)2z nμ(n)n\mu(n)nμ(n) −nμ(−n−1)-n\mu(-n-1)−nμ(−n−1)
zz−a\frac{z}{z-a}z−az anμ(n)a^n\mu(n)anμ(n) −anμ(−n−1)-a^n\mu(-n-1)−anμ(−n−1)
z2(z−a)2\frac{z^2}{(z-a)^2}(z−a)2z2 (n+1)anμ(n)(n+1)a^n\mu(n)(n+1)anμ(n) −(n+1)anμ(−n−1)-(n+1)a^n\mu(-n-1)−(n+1)anμ(−n−1)
z(z−a)2\frac{z}{(z-a)^2}(z−a)2z nan−1μ(n)na^{n-1}\mu(n)nan−1μ(n) −nanμ(−n−1)-na^n\mu(-n-1)−nanμ(−n−1)