Pytorch学习笔记

梯度下降入门

import torch
def gradDescent(X, y, eps = torch.tensor(0.01, requires_grad = True), numIt = 1000):
    m, n = X.shape
    weights = torch.zeros(n, 1, requires_grad = True)
    for k in range(numIt):
        grad = torch.mm(X.t(), (torch.mm(X, weights) - y))/2
        weights = weights - eps * grad
    return weights
X = torch.tensor([[1.,1],[3, 1]], requires_grad = True)
y = torch.tensor([2.,4], requires_grad = True).reshape(2,1)
weights = gradDescent(X, y, numIt = 10000)
print(weights)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值