买卖股票的时机

本文探讨了如何使用贪心算法和动态规划解决股票交易问题,以获得最大利润。通过分析给定的股票价格数组,分别展示了两种算法的实现,包括在有交易限制的情况下找到最佳买卖时机。示例展示了不同价格序列下的最优交易策略,从而得出最大利润。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个数组 prices ,其中 prices[i] 表示股票第 i 天的价格。

在每一天,你可能会决定购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以购买它,然后在 同一天 出售。
返回 你能获得的 最大 利润 。

示例 1:
输入: prices = [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

示例 2:
输入: prices = [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:
输入: prices = [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104

贪心(求最大上升高度)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if(prices.size()<2){
            return 0;
        }
        int max=0;
        for(int i=1;i<prices.size();i++){
            if(prices[i-1]<prices[i]){
                max=max+prices[i]-prices[i-1];
            }
        }
        return max;
    }
};

动态规划

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        int dp[n][2];
        dp[0][0] = 0, dp[0][1] = -prices[0];
        for (int i = 1; i < n; ++i) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }
        return dp[n - 1][0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

取个名字真难啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值