机器学习——正则化代码

本文通过Logistic回归实例探讨正则化对缓解过拟合的作用。通过对训练集和验证集的表现对比,展示正则化如何提高模型的泛化能力,降低过拟合现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这次以Logistic回归作为基础,将再次复习Logistic回归,对Logistic回归将有更深的理解。通过对比未进行正则化的Logistic回归与正则化的Logistic回归在相同数据集上的表现来理解正则化缓解过拟合现象的作用。

首先,我们导入这次实验所需要使用的Python库,以及辅助函数

import numpy as np
import matplotlib.pyplot as plt

from utils import *

实际应用中容易出现过拟合,其原因则在于模型已经足够复杂,但是我们往往根本就不知道设计的模型的复杂程度是否刚好满足要求。

这就需要我们去判断模型是否刚刚好,如何判断是否出现了过拟合或欠拟合呢?我们一般通过将数据分为3个部分,训练集(train set),验证集(val

### L1正则化的原理 L1正则化是一种通过在损失函数中引入权重系数的绝对值之和来约束模型复杂度的技术。其核心在于通过对权重施加惩罚,促使部分权重变为零,从而实现稀疏解的效果[^1]。 具体而言,在线性回归或其他监督学习任务中,L1正则化的优化目标可表示为: \[ \text{minimize } \text{MSE} + \lambda \sum_{j=1}^{p} |w_j| \] 这里的 \( w_j \) 表示第 \( j \) 个特征对应的权重,\( \lambda \) 是控制正则强度的超参数[^2]。 --- ### L1正则化的作用 #### 1. **特征选择** 由于L1正则化倾向于使一些权重精确等于0,这实际上起到了自动特征选择的功能。只有那些对预测结果贡献显著的特征会被保留下来,其余不重要的特征被赋予零权重。 #### 2. **防止过拟合** 通过减少有效参与建模的特征数量以及降低各权重的数值范围,L1正则化能够有效地缓解模型的过拟合现象[^3]。 #### 3. **提高解释性** 因为最终模型仅依赖少数几个重要特征,所以相比未经过正则化的模型更加易于理解和分析[^4]。 --- ### 几何视角下的稀疏性原因 从几何角度看,L1正则化之所以能产生稀疏解是因为它定义了一个具有尖角形状(如二维情况下的菱形)的可行域边界。相比于圆形边界的L2正则化,这种特殊的结构更有可能让最优解落在坐标轴上——此时对应维度上的权值恰好为零。 此外需要注意的是,并不是所有的初始条件都能导致完全意义上的稀疏解;当不同方向上的梯度变化幅度相近时,则可能只是单纯缩小了所有参数规模而不至于彻底消除某些特定项[^5]。 --- ### 实现方法 以下是基于Python语言的一个简单例子展示如何利用Scikit-Learn库实现带L1正则化的逻辑斯蒂回归分类器: ```python from sklearn.linear_model import LogisticRegression import numpy as np # 创建数据集 (假设二元分类问题) X = np.array([[0, 0], [1, 1]]) y = np.array([0, 1]) # 初始化带有L1正则化的Logistic Regression对象 clf = LogisticRegression(penalty='l1', solver='liblinear') # 训练模型 clf.fit(X, y) print("Coefficients:", clf.coef_) ``` 上述代码片段展示了设置`penalty='l1'`即可启用L1正则化机制,同时指定合适的求解算法比如`liblinear`支持该功能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

取个名字真难啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值