cordic 算法学习记录

FPGA中的Cordic算法:硬件加速三角函数求解
本文介绍了在FPGA中使用Cordic算法实现复杂的三角函数和相位角计算,通过迭代逼近简单运算,减少RAM和乘法器资源。Cordic算法包括向量模式和旋转模式,适用于串行和并行模块,Quartus的CordicIP核提供了关键函数如Sincos和Atan2用于设计。

参考:b站教学视频FPGA:Cordic算法介绍与实现_哔哩哔哩_bilibili

       FPGA硬件实现加减法、移位等操作比较简单,但是实现乘除以及函数计算复杂度高且占用资源多,常见的计算三角函数/平方根的求解方式有①查找表:先把函数对应结果存在存储器中,根据输入地址确定计算结果;②泰勒展开:把三角函数等函数求解展开成乘、除、加法进行求解。这两种方法耗费ram/乘法器的资源巨大,为了仅用简单的移位/加减法运算求解出复杂三角函数,提出了cordic算法。

        cordic算法:coordinate rootation digital computer 坐标旋转数字计算方法(硬件加速算法)。

类似于二分法,反复迭代,逐次逼近最终值,计算结果达到一定精度即可终止。与二分法不同的是,这里不是每次都改变二分之一的角度,而是改变二分之一的tan值,计算出对应角度,从而把复杂运算转换为简单的移位运算。

        问题:已知某点坐标,①求旋转到X轴需要的角度(向量模式);②求旋转某角度后的坐标(旋转模式);    

对于旋转模式:

模块输入为:坐标(x,y),要旋转的角度z。输出为:新

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值