365天深度学习之运动鞋识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/xLjALoOD8HPZcH563En8bQ) 中的学习记录博客**
>- **🍦 参考文章:365天深度学习训练营-5周:运动鞋品牌识别(训练营内部成员可读)**
>- **🍖 原作者:[K同学啊](https://mp.weixin.qq.com/s/xLjALoOD8HPZcH563En8bQ)**


# 1.设置GPU
from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus
# 2.导入数据
data_dir = "D:\\deeplearning\\day05\\DataSet\\46-data\\"

data_dir = pathlib.Path(data_dir)

# 3.查看数据
image_count = len(list(data_dir.glob('*/*/*.jpg')))

print("图片总数为:",image_count)

roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

# 二、数据预处理
batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.youkuaiyun.com/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "D:\\deeplearning\\day05\\DataSet\\46-data\\train",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.youkuaiyun.com/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "D:\\deeplearning\\day05\\DataSet\\46-data\\test",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

'''
输出class_names
'''
class_names = train_ds.class_names
print(class_names)


'''
输出图片的尺寸
'''
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

    
# 4.配置数据集
'''
tensorflow中数据集Dataset中shuffle(buffer_size)方法详解
参考文章--->https://zhuanlan.zhihu.com/p/42417456
shuffle方法用来打乱数据集中的数据顺序。
buffer_size参数设置是数据集首先会选取数据的前buffer_size个数据项,填充buffer
然后从中随机挑选一条数据,并让原数据集中一条数据补充进来,然后再从buffer中选择下一条数据输出
以此类推...
shuffle的作用是为了防止数据过拟合的重要手段,不当的buffer size会让shuffle毫无意义

'''
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

# 三、构建CNN网络

"""
关于卷积核的计算不懂的可以参考文章:https://blog.youkuaiyun.com/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.youkuaiyun.com/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Dropout(0.3),  
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

# 四、训练模型
'''
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

● 损失函数(loss):用于衡量模型在训练期间的准确率。
● 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
● 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
'''

# 1.设置动态学习率
# 设置初始学习率
initial_learning_rate = 0.0001

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=30,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

'''
学习率大与学习率小的优缺点分析:

学习率大

●  优点: 
  ○ 1、加快学习速率。
  ○ 2、有助于跳出局部最优值。
●  缺点: 
  ○ 1、导致模型训练不收敛。
  ○ 2、单单使用大学习率容易导致模型不精确。

学习率小

●  优点: 
  ○ 1、有助于模型收敛、模型细化。
  ○ 2、提高模型精度。
●  缺点: 
  ○ 1、很难跳出局部最优值。
  ○ 2、收敛缓慢。

注意:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:
learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)
'''

'''
EarlyStopping()参数说明:

● monitor: 被监测的数据。
● min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
● patience: 没有进步的训练轮数,在这之后训练就会被停止。
● verbose: 详细信息模式。
● mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
● baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
● estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。
'''

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 50

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)

# 3.模型训练
history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])

# 五、模型评估
# 1.Loss与Accuracy图
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

# 2.指定图片预测
# 加载效果最好的模型权重
model.load_weights('best_model.h5')

from PIL import Image
import numpy as np

# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg")  #这里选择你需要预测的图片
img = Image.open("D:\\deeplearning\\day05\\DataSet\\46-data\\test\\nike\\2.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])
图片总数为: 578
Found 502 files belonging to 2 classes.
Found 76 files belonging to 2 classes.
['adidas', 'nike']
(32, 224, 224, 3)
(32,)
Model: "sequential_5"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling_5 (Rescaling)      (None, 224, 224, 3)       0         
_________________________________________________________________
conv2d_15 (Conv2D)           (None, 222, 222, 16)      448       
_________________________________________________________________
average_pooling2d_10 (Averag (None, 111, 111, 16)      0         
_________________________________________________________________
conv2d_16 (Conv2D)           (None, 109, 109, 32)      4640      
_________________________________________________________________
average_pooling2d_11 (Averag (None, 54, 54, 32)        0         
_________________________________________________________________
dropout_10 (Dropout)         (None, 54, 54, 32)        0         
_________________________________________________________________
conv2d_17 (Conv2D)           (None, 52, 52, 64)        18496     
_________________________________________________________________
dropout_11 (Dropout)         (None, 52, 52, 64)        0         
_________________________________________________________________
flatten_5 (Flatten)          (None, 173056)            0         
_________________________________________________________________
dense_10 (Dense)             (None, 128)               22151296  
_________________________________________________________________
dense_11 (Dense)             (None, 2)                 258       
=================================================================
Total params: 22,175,138
Trainable params: 22,175,138
Non-trainable params: 0
_________________________________________________________________
Epoch 1/50
16/16 [==============================] - 1s 23ms/step - loss: 0.9877 - accuracy: 0.4661 - val_loss: 0.7043 - val_accuracy: 0.5000

Epoch 00001: val_accuracy improved from -inf to 0.50000, saving model to best_model.h5
Epoch 2/50
16/16 [==============================] - 0s 18ms/step - loss: 0.6999 - accuracy: 0.4781 - val_loss: 0.6932 - val_accuracy: 0.5000

Epoch 00002: val_accuracy did not improve from 0.50000
Epoch 3/50
16/16 [==============================] - 0s 18ms/step - loss: 0.6937 - accuracy: 0.5020 - val_loss: 0.6922 - val_accuracy: 0.5000

Epoch 00003: val_accuracy did not improve from 0.50000
Epoch 4/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6919 - accuracy: 0.5438 - val_loss: 0.6908 - val_accuracy: 0.5263

Epoch 00004: val_accuracy improved from 0.50000 to 0.52632, saving model to best_model.h5
Epoch 5/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6910 - accuracy: 0.5199 - val_loss: 0.6894 - val_accuracy: 0.6053

Epoch 00005: val_accuracy improved from 0.52632 to 0.60526, saving model to best_model.h5
Epoch 6/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6888 - accuracy: 0.5598 - val_loss: 0.6880 - val_accuracy: 0.6447

Epoch 00006: val_accuracy improved from 0.60526 to 0.64474, saving model to best_model.h5
Epoch 7/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6877 - accuracy: 0.6414 - val_loss: 0.6868 - val_accuracy: 0.6184

Epoch 00007: val_accuracy did not improve from 0.64474
Epoch 8/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6867 - accuracy: 0.5737 - val_loss: 0.6870 - val_accuracy: 0.5395

Epoch 00008: val_accuracy did not improve from 0.64474
Epoch 9/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6831 - accuracy: 0.6096 - val_loss: 0.6830 - val_accuracy: 0.6711

Epoch 00009: val_accuracy improved from 0.64474 to 0.67105, saving model to best_model.h5
Epoch 10/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6838 - accuracy: 0.6016 - val_loss: 0.6815 - val_accuracy: 0.6711

Epoch 00010: val_accuracy did not improve from 0.67105
Epoch 11/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6809 - accuracy: 0.6135 - val_loss: 0.6790 - val_accuracy: 0.6711

Epoch 00011: val_accuracy did not improve from 0.67105
Epoch 12/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6767 - accuracy: 0.7191 - val_loss: 0.6757 - val_accuracy: 0.6711

Epoch 00012: val_accuracy did not improve from 0.67105
Epoch 13/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6755 - accuracy: 0.6355 - val_loss: 0.6739 - val_accuracy: 0.6711

Epoch 00013: val_accuracy did not improve from 0.67105
Epoch 14/50
16/16 [==============================] - 0s 17ms/step - loss: 0.6704 - accuracy: 0.6813 - val_loss: 0.6677 - val_accuracy: 0.6579

Epoch 00014: val_accuracy did not improve from 0.67105
Epoch 15/50
16/16 [==============================] - 0s 17ms/step - loss: 0.6666 - accuracy: 0.6713 - val_loss: 0.6689 - val_accuracy: 0.6447

Epoch 00015: val_accuracy did not improve from 0.67105
Epoch 16/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6623 - accuracy: 0.6295 - val_loss: 0.6594 - val_accuracy: 0.6711

Epoch 00016: val_accuracy did not improve from 0.67105
Epoch 17/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6604 - accuracy: 0.5976 - val_loss: 0.6583 - val_accuracy: 0.6579

Epoch 00017: val_accuracy did not improve from 0.67105
Epoch 18/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6530 - accuracy: 0.6793 - val_loss: 0.6582 - val_accuracy: 0.6579

Epoch 00018: val_accuracy did not improve from 0.67105
Epoch 19/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6474 - accuracy: 0.6454 - val_loss: 0.6493 - val_accuracy: 0.6842

Epoch 00019: val_accuracy improved from 0.67105 to 0.68421, saving model to best_model.h5
Epoch 20/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6455 - accuracy: 0.6594 - val_loss: 0.6539 - val_accuracy: 0.6579

Epoch 00020: val_accuracy did not improve from 0.68421
Epoch 21/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6408 - accuracy: 0.6713 - val_loss: 0.6482 - val_accuracy: 0.6579

Epoch 00021: val_accuracy did not improve from 0.68421
Epoch 22/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6353 - accuracy: 0.6653 - val_loss: 0.6426 - val_accuracy: 0.6711

Epoch 00022: val_accuracy did not improve from 0.68421
Epoch 23/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6321 - accuracy: 0.6793 - val_loss: 0.6443 - val_accuracy: 0.6711

Epoch 00023: val_accuracy did not improve from 0.68421
Epoch 24/50
16/16 [==============================] - 0s 17ms/step - loss: 0.6264 - accuracy: 0.6733 - val_loss: 0.6432 - val_accuracy: 0.6711

Epoch 00024: val_accuracy did not improve from 0.68421
Epoch 25/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6243 - accuracy: 0.6773 - val_loss: 0.6321 - val_accuracy: 0.6711

Epoch 00025: val_accuracy did not improve from 0.68421
Epoch 26/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6245 - accuracy: 0.6753 - val_loss: 0.6375 - val_accuracy: 0.6842

Epoch 00026: val_accuracy did not improve from 0.68421
Epoch 27/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6224 - accuracy: 0.6753 - val_loss: 0.6321 - val_accuracy: 0.6842

Epoch 00027: val_accuracy did not improve from 0.68421
Epoch 28/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6133 - accuracy: 0.6972 - val_loss: 0.6440 - val_accuracy: 0.6711

Epoch 00028: val_accuracy did not improve from 0.68421
Epoch 29/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6145 - accuracy: 0.6853 - val_loss: 0.6380 - val_accuracy: 0.6711

Epoch 00029: val_accuracy did not improve from 0.68421
Epoch 30/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6147 - accuracy: 0.6873 - val_loss: 0.6274 - val_accuracy: 0.6842

Epoch 00030: val_accuracy did not improve from 0.68421
Epoch 31/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6077 - accuracy: 0.6912 - val_loss: 0.6324 - val_accuracy: 0.6842

Epoch 00031: val_accuracy did not improve from 0.68421
Epoch 32/50
16/16 [==============================] - 0s 16ms/step - loss: 0.6021 - accuracy: 0.6992 - val_loss: 0.6214 - val_accuracy: 0.6579

Epoch 00032: val_accuracy did not improve from 0.68421
Epoch 33/50
16/16 [==============================] - 0s 17ms/step - loss: 0.6010 - accuracy: 0.7131 - val_loss: 0.6341 - val_accuracy: 0.6842

Epoch 00033: val_accuracy did not improve from 0.68421
Epoch 34/50
16/16 [==============================] - 0s 16ms/step - loss: 0.5984 - accuracy: 0.6972 - val_loss: 0.6257 - val_accuracy: 0.6842

Epoch 00034: val_accuracy did not improve from 0.68421
Epoch 35/50
16/16 [==============================] - 0s 17ms/step - loss: 0.5986 - accuracy: 0.7171 - val_loss: 0.6217 - val_accuracy: 0.6842

Epoch 00035: val_accuracy did not improve from 0.68421
Epoch 36/50
16/16 [==============================] - 0s 16ms/step - loss: 0.5937 - accuracy: 0.7052 - val_loss: 0.6233 - val_accuracy: 0.6842

Epoch 00036: val_accuracy did not improve from 0.68421
Epoch 37/50
16/16 [==============================] - 0s 17ms/step - loss: 0.5940 - accuracy: 0.7171 - val_loss: 0.6222 - val_accuracy: 0.6842

Epoch 00037: val_accuracy did not improve from 0.68421
Epoch 38/50
16/16 [==============================] - 0s 16ms/step - loss: 0.5892 - accuracy: 0.7211 - val_loss: 0.6281 - val_accuracy: 0.6842

Epoch 00038: val_accuracy did not improve from 0.68421
Epoch 39/50
16/16 [==============================] - 0s 16ms/step - loss: 0.5890 - accuracy: 0.7171 - val_loss: 0.6212 - val_accuracy: 0.6842

Epoch 00039: val_accuracy did not improve from 0.68421
Epoch 00039: early stopping

在这里插入图片描述
预测结果为: nike


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值