>- 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/xLjALoOD8HPZcH563En8bQ) 中的学习记录博客
>- 参考文章地址: [🔗深度学习100例-卷积神经网络(CNN)天气识别 | 第5天](https://mtyjkh.blog.csdn.net/article/details/117186183)
# 一、前期工作
# # 1.设置GPU
import matplotlib
import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')
if gpus:
gpu0 = gpus[0] # 如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0, True) # 设置GPU显存用量按需使用
tf.config.set_visible_devices([gpu0], "GPU")
# 2.导入数据
import os, PIL, pathlib
import matplotlib.pyplot as plt
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers, models
data_dir = "D:\\deeplearning\\day03\\data\\weather_photos"
data_dir = pathlib.Path(data_dir) # 创建path对象,获取文件位置
'''
pathlib.path中各种方法参考了以下博客
http://www.ityouknow.com/python/2019/10/19/python-pathlib-035.html
https://www.cnblogs.com/huwang-sun/p/12087850.html
https://zhuanlan.zhihu.com/p/33524938
https://blog.youkuaiyun.com/W1995S/article/details/114706484
'''
# 3.查看数据
# 本次数据集一共分为cloudy, rain, shine, sunrise四类,分别存放于weather_photos文件夹中以及各自命名的子文件夹中
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)
sun = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(sun[1]))
# 二、数据预处理
# 1.加载数据
# 使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
batch_size = 32
img_height = 180
img_width = 180
'''
image_dataset_from_directory()方法参考以下博客:
https://mtyjkh.blog.youkuaiyun.com/article/details/117018789
该方法会返回一个tf.data.Dataset的数据集,并且从子目录依次生成批次图像
支持的图像格式:jpg,png,bmp,gif的第一帧
===各个参数的含义===
directory:数据所在目录。如果标签为inferred,则应包含子目录,每个目录包含一个类的图像。否则,将忽略目录结构
validation_split:0和1之间的可选浮点数,可保留一部分数据用于验证。
subset:training或validation之一。仅在设置validation_split时使用。
seed:用于shuffle和转换的可选随机种子。
image_size:从磁盘读取数据后将其重新调整大小。。默认为:(256*256)
batch_size:数据批次的大小。默认值:32
labels:inferred(标签从目录结构中生成),或者为整数标签的列表/元组
class_names:仅当labels为inferred时有效,这是类名称的明确列表
label_model
如果label_mode 是 int, labels是形状为(batch_size, )的int32张量
如果label_mode 是 binary, labels是形状为(batch_size, 1)的1和0的float32张量。
如果label_mode 是 categorial, labels是形状为(batch_size, num_classes)的float32张量,表示类索引的one-hot编码。
color_model:grayscale, rgb, rgba之一,默认值为:rgb,图像将被转换为1,3,4三种通道数
'''
# 训练集
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
# 验证集
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)
'''
tf.data.Dataset的解析与使用参考了如下博客
https://blog.youkuaiyun.com/weixin_43935696/article/details/112691755
tf.data.Dataset.take(count): 创建最多包含此数据集中初始元素
count参数:此数据集中构成新数据集时应采用的元素数,如果count未定义或为负数,或者计数大于数据集的大小
则新数据集中将包含此数据的所有元素
'''
# 2.可视化数据
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
for i in range(20):
ax = plt.subplot(5, 10, i+1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
plt.show()
# 3.再次检查数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape) # Image_batch是形状的张量(32,180,180,3).表示的是一批形状为180*180*3的32张图片
print(labels_batch.shape) # 表示的标签对应这32张图片
break
# 4.配置数据集
'''
tensorflow中数据集Dataset中shuffle(buffer_size)方法详解
参考文章--->https://zhuanlan.zhihu.com/p/42417456
shuffle方法用来打乱数据集中的数据顺序。
buffer_size参数设置是数据集首先会选取数据的前buffer_size个数据项,填充buffer
然后从中随机挑选一条数据,并让原数据集中一条数据补充进来,然后再从buffer中选择下一条数据输出
以此类推...
shuffle的作用是为了防止数据过拟合的重要手段,不当的buffer size会让shuffle毫无意义
'''
'''
prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。
因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。
当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。
如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态.
'''
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
# 三、构建CNN网络
'''
卷积神经网络(CNN)的输入是张量(Tensor)形式的(image_height, image_width, color_channels)
包含了图像高度,宽度以及颜色信息。不需要输入batch_size。color_channels为(R,G,B)的三个颜色通道
在此示例中,我们的CNN输入形状为(image_height, image_width, 3)并赋值给input_shape。
'''
'''
tf.keras.models.Sequential()用法
Sequential()方法是一个容器,描述了神经网络的网络结构,在Sequential()的输入参数中描述从输入层到输出层的网络结构
卷积的过程和进行下采样的过程参考了如下博客
https://blog.youkuaiyun.com/qq_42740834/article/details/123757816
'''
num_classes = 4
model = models.Sequential([
layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1 16个卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层1, 2*2采样
layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2 卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层2, 2*2采样
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Dropout(0.3),
layers.Flatten(), # Flatten层,连接卷积层与全连接层
layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取
layers.Dense(num_classes) # 输出层 输出预期结果
])
model.summary() # 打印网络结构
# 四、编译
# 在准备对模型进行训练之前,还需要再对其进行一些设置,以下内容是在模型的编译步骤中添加的
'''
1.损失函数(loss):用于衡量模型在训练期间的准确率
2.优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
3.指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像所占比例。
'''
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
# 五、训练模型
'''
===参考文章===
https://blog.youkuaiyun.com/yunfeather/article/details/106463327tensorflow中model.fit()方法详解
作用:用于执行训练过程
model.fit( 训练集的输入特征,
训练集的标签,
batch_size, #每一个batch的大小
epochs, #迭代次数
validation_data = (测试集的输入特征,测试集的标签),
validation_split = 从测试集中划分多少比例给训练集,
validation_freq = 测试的epoch间隔数)
'''
epochs = 20 # 训练次数
history = model.fit(
train_ds, # 包含训练集的输入特征和标签
validation_data=val_ds, # 测试集的输入特征和标签
epochs=epochs # 迭代次数
)
# 六、模型评估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
# 七、识别图片
from PIL import Image
img = Image.open("D:\\deeplearning\\day03\\data\\weather_photos\\shine\\shine1.jpg")
image = tf.image.resize(img, [img_height, img_width])
img_array = tf.expand_dims(image, 0) / 255.0 # 归一化处理(与训练集处理的方式保持一致)
predictions = model.predict(img_array)
plt.title("test_img")
plt.axis('off')
plt.imshow(img)
plt.show()
print("预测结果为:", class_names[np.argmax(predictions)])
图片总数为: 1125
Found 1125 files belonging to 4 classes.
Using 900 files for training.
Found 1125 files belonging to 4 classes.
Using 225 files for validation.
['cloudy', 'rain', 'shine', 'sunrise']
(32, 180, 180, 3)
(32,)
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
rescaling_1 (Rescaling) (None, 180, 180, 3) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 178, 178, 16) 448
_________________________________________________________________
average_pooling2d_2 (Average (None, 89, 89, 16) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 87, 87, 32) 4640
_________________________________________________________________
average_pooling2d_3 (Average (None, 43, 43, 32) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 41, 41, 64) 18496
_________________________________________________________________
dropout_1 (Dropout) (None, 41, 41, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 107584) 0
_________________________________________________________________
dense_2 (Dense) (None, 128) 13770880
_________________________________________________________________
dense_3 (Dense) (None, 4) 516
=================================================================
Total params: 13,794,980
Trainable params: 13,794,980
Non-trainable params: 0
_________________________________________________________________
Epoch 1/20
29/29 [==============================] - 2s 23ms/step - loss: 2.0616 - accuracy: 0.4944 - val_loss: 0.6297 - val_accuracy: 0.7200
Epoch 2/20
29/29 [==============================] - 0s 11ms/step - loss: 0.5485 - accuracy: 0.8067 - val_loss: 0.5094 - val_accuracy: 0.8000
Epoch 3/20
29/29 [==============================] - 0s 11ms/step - loss: 0.4315 - accuracy: 0.8456 - val_loss: 0.7416 - val_accuracy: 0.7244
Epoch 4/20
29/29 [==============================] - 0s 11ms/step - loss: 0.3464 - accuracy: 0.8756 - val_loss: 0.5055 - val_accuracy: 0.8000
Epoch 5/20
29/29 [==============================] - 0s 11ms/step - loss: 0.2389 - accuracy: 0.9244 - val_loss: 0.4116 - val_accuracy: 0.8222
Epoch 6/20
29/29 [==============================] - 0s 11ms/step - loss: 0.2310 - accuracy: 0.9156 - val_loss: 0.3010 - val_accuracy: 0.8889
Epoch 7/20
29/29 [==============================] - 0s 11ms/step - loss: 0.1767 - accuracy: 0.9367 - val_loss: 0.5590 - val_accuracy: 0.7822
Epoch 8/20
29/29 [==============================] - 0s 11ms/step - loss: 0.1996 - accuracy: 0.9244 - val_loss: 0.3885 - val_accuracy: 0.8667
Epoch 9/20
29/29 [==============================] - 0s 11ms/step - loss: 0.1220 - accuracy: 0.9589 - val_loss: 0.3760 - val_accuracy: 0.8978
Epoch 10/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0633 - accuracy: 0.9833 - val_loss: 0.3657 - val_accuracy: 0.8978
Epoch 11/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0793 - accuracy: 0.9700 - val_loss: 0.3810 - val_accuracy: 0.8844
Epoch 12/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0539 - accuracy: 0.9822 - val_loss: 0.4025 - val_accuracy: 0.8844
Epoch 13/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0782 - accuracy: 0.9744 - val_loss: 0.7636 - val_accuracy: 0.7867
Epoch 14/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0864 - accuracy: 0.9644 - val_loss: 0.4405 - val_accuracy: 0.9067
Epoch 15/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0414 - accuracy: 0.9889 - val_loss: 0.7416 - val_accuracy: 0.7956
Epoch 16/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0451 - accuracy: 0.9844 - val_loss: 0.5058 - val_accuracy: 0.8533
Epoch 17/20
29/29 [==============================] - 0s 11ms/step - loss: 0.1245 - accuracy: 0.9522 - val_loss: 0.6877 - val_accuracy: 0.8267
Epoch 18/20
29/29 [==============================] - 0s 11ms/step - loss: 0.1018 - accuracy: 0.9744 - val_loss: 0.5999 - val_accuracy: 0.8622
Epoch 19/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0613 - accuracy: 0.9778 - val_loss: 0.4384 - val_accuracy: 0.8578
Epoch 20/20
29/29 [==============================] - 0s 11ms/step - loss: 0.0293 - accuracy: 0.9922 - val_loss: 0.5907 - val_accuracy: 0.8622
预测结果为: sunrise