食物链 POJ - 1182 (种类并查集)

动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
只有一个整数,表示假话的数目。
Sample Input
100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5
Sample Output
3
题解:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <algorithm>
#define lon long long
using namespace std;
int d[50005];
int a,b,c,n,k;
int r[100009];//存与父节点的关系 0 同一类,1被父节点吃,2吃父节点
void init()
{
    for(int i=1;i<=n;i++)
    {
        d[i]=i;
        r[i]=0;//开始自己就是自己的父亲,每一个点均独立
    }
}
int findshu(int x)
{
  if(x==d[x])
    return x;
   int t=d[x];
  d[x]=findshu(d[x]);
  r[x]=(r[x]+r[t])%3;
  return d[x];
}
void judge(int x,int y,int o)
{
    int fx=findshu(x);
    int fy=findshu(y);
    d[fy]=d[fx];
    r[fy]=(r[x]-r[y]+3+(o-1))%3;

}

int main()
{
    int fx,fy;
    scanf("%d %d",&n,&k);
    init();
    int sum=0;
    for(int i=0;i<k;i++)
    {
        scanf("%d %d %d",&a,&b,&c);
        if(b>n||c>n||a==2&&b==c)
        {
            sum++;
        }
        else if(findshu(b)==findshu(c))
        {
            if(a==1&&r[b]!=r[c])
                sum++;
            if(a==2&&(r[b]+1)%3!=r[c])
                sum++;
        }
        else
        {
            judge(b,c,a);
        }
    }
    cout<<sum<<endl;
}

### 并查集算法的时间复杂度分析 并查集是一种高效的用于处理集合合并与查询的算法。在POJ 1182 食物链问题中,使用了并查集来判断动物之间的关系,并且通过路径压缩和按秩合并等优化手段,可以极大地提高算法的效率。 #### 路径压缩的影响 路径压缩是并查集中一种重要的优化技术,它能够将查找过程中经过的所有节点直接连接到根节点上。这种操作使得后续查找的时间复杂度接近于常数[^1]。具体来说,路径压缩后的查找操作时间复杂度可以用阿克曼函数的反函数 \( \alpha(n) \) 来表示,其中 \( n \) 是集合中的元素个数。阿克曼函数的增长速度极慢,因此 \( \alpha(n) \) 在实际应用中几乎可以视为常数。 ```python def Find(x): if x != par[x]: par[x] = Find(par[x]) # 路径压缩 return par[x] ``` #### 按秩合并的作用 按秩合并是一种优化策略,它通过将较小的树合并到较大的树上来减少树的高度。这种方法结合路径压缩后,可以进一步降低操作的时间复杂度[^2]。在实际实现中,可以通过维护一个数组 `rank` 来记录每个集合的深度,并在合并时选择深度较小的树挂接到深度较大的树上。 ```python def Union(x, y): rootX = Find(x) rootY = Find(y) if rootX != rootY: if rank[rootX] > rank[rootY]: par[rootY] = rootX elif rank[rootX] < rank[rootY]: par[rootX] = rootY else: par[rootY] = rootX rank[rootX] += 1 ``` #### 时间复杂度总结 对于 POJ 1182 食物链问题,假设总共有 \( n \) 个动物和 \( m \) 条关系,则初始化并查集的时间复杂度为 \( O(n) \),每次查找或合并操作的时间复杂度为 \( O(\alpha(n)) \)[^2]。由于 \( \alpha(n) \) 的增长极其缓慢,在实际情况下可以认为其为常数。因此,整个算法的时间复杂度主要由关系数量 \( m \) 决定,最终的时间复杂度为 \( O(m \cdot \alpha(n)) \)[^1]。 ### 代码示例 以下是一个完整的并查集实现,适用于 POJ 1182 食物链问题: ```python class UnionFind: def __init__(self, n): self.par = list(range(3 * n)) self.rank = [0] * (3 * n) def Find(self, x): if self.par[x] != x: self.par[x] = self.Find(self.par[x]) return self.par[x] def Union(self, x, y): rootX = self.Find(x) rootY = self.Find(y) if rootX != rootY: if self.rank[rootX] > self.rank[rootY]: self.par[rootY] = rootX elif self.rank[rootX] < self.rank[rootY]: self.par[rootX] = rootY else: self.par[rootY] = rootX self.rank[rootX] += 1 def Same(self, x, y): return self.Find(x) == self.Find(y) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值