Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if its K-based notation doesn’t contain two successive zeros. For example:
- 1010230 is a valid 7-digit number;
- 1000198 is not a valid number;
- 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing N digits.
You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 1800.
Input
The numbers N and K in decimal notation separated by the line break.
Output
The result in decimal notation.
Example
input | output |
---|---|
2 10 |
90 |
#include <iostream>
#include<cstdio>
using namespace std;
int main()
{
int a[2000] = {0}, b[2000] = {0}, c[2000] = {0};
int g, i, j, m = 1;
int n, k;
scanf("%i %i",&n,&k);
a[0] = 1;
b[0] = k - 1;
for(i=2; i<=n; i++)
{
g = 0;
for(j=0; j<m; j++)
{
c[j] = a[j] + b[j];
c[j] = c[j]*(k-1) + g;
if(c[j]>9)
{
g=c[j]/10;
c[j]=c[j]%10;
}
else
{
g = 0;
}
a[j] = b[j];
b[j] = c[j];
}
if(g)
{
b[m++]=g;
}
}
for(j=m-1; j>=0; j--)
{
printf("%d", b[j]);
}
return 0;
}
import java.io.*;
import java.util.*;
import java.math.*;
import java.text.*;
public class p1012
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
int k = in.nextInt();
BigInteger dp[] = new BigInteger[n + 1];
dp[0] = BigInteger.valueOf(1);
dp[1] = BigInteger.valueOf(k - 1);
for (int i = 2; i <= n; ++i)
dp[i] = dp[i - 1].add(dp[i - 2]).multiply(dp[1]);
out.println(dp[n]);
out.flush();
}
}