C. Almost Arithmetical Progression(DP)

本文介绍了一个算法问题的解决方案,旨在从给定的整数序列中找到最长的几乎等差数列子序列。几乎等差数列是一种特殊序列,其元素通过特定规则递增或递减。文章提供了详细的动态规划算法实现,用于高效地解决该问题。

C. Almost Arithmetical Progression

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an almost arithmetical progression, if its elements can be represented as:

  • a1 = p, where p is some integer;
  • ai = ai - 1 + ( - 1)i + 1·q (i > 1), where q is some integer.

Right now Gena has a piece of paper with sequence b, consisting of n integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.

Sequence s1,  s2,  ...,  sk is a subsequence of sequence b1,  b2,  ...,  bn, if there is such increasing sequence of indexes i1, i2, ..., ik(1  ≤  i1  <  i2  < ...   <  ik  ≤  n), that bij  =  sj. In other words, sequence s can be obtained from b by crossing out some elements.

Input

The first line contains integer n (1 ≤ n ≤ 4000). The next line contains n integers b1, b2, ..., bn (1 ≤ bi ≤ 106).

Output

Print a single integer — the length of the required longest subsequence.

Examples

input

Copy

2
3 5

output

Copy

2

input

Copy

4
10 20 10 30

output

Copy

3

Note

In the first test the sequence actually is the suitable subsequence.

In the second test the following subsequence fits: 10, 20, 10.

【思路】

dp[i][j] i表示当前数的位置,j表示前面的数。

AC代码:

#include <iostream>
#include <cstring>
using namespace std;
int b[4005];
int dp[4005][4005];
int N;
int main()
{
    cin>>N;
    for(int i=1;i<=N;i++)
    {
        cin>>b[i];
    }
    memset(dp,0,sizeof(dp));
    int res=0;
    for(int i=1;i<=N;i++)
    {
        int t=0;
        for(int j=0;j<i;j++)
        {
            dp[i][j]=dp[j][t]+1;
            if(b[i]==b[j])
                t=j;
            res=max(res,dp[i][j]);
        }
    }
    cout<<res<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值