Codeforces 670C Array

本文介绍了一种算法,用于在整数数组中找到包含恰好k个不同整数的最小子数组。通过从左到右扫描数组并使用标记数组来跟踪唯一元素,算法能够有效地定位满足条件的子数组边界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You’ve got an array a, consisting of n integers: a1, a2, …, an. Your task is to find a minimal by inclusion segment [l, r] (1 ≤ l ≤ r ≤ n) such, that among numbers al,  al + 1,  …,  ar there are exactly k distinct numbers.

Segment [l, r] (1 ≤ l ≤ r ≤ n; l, r are integers) of length m = r - l + 1, satisfying the given property, is called minimal by inclusion, if there is no segment [x, y] satisfying the property and less then m in length, such that 1 ≤ l ≤ x ≤ y ≤ r ≤ n. Note that the segment [l, r] doesn’t have to be minimal in length among all segments, satisfying the given property.

Input
The first line contains two space-separated integers: n and k (1 ≤ n, k ≤ 105). The second line contains n space-separated integers a1, a2, …, an — elements of the array a (1 ≤ ai ≤ 105).

Output
Print a space-separated pair of integers l and r (1 ≤ l ≤ r ≤ n) such, that the segment [l, r] is the answer to the problem. If the sought segment does not exist, print “-1 -1” without the quotes. If there are multiple correct answers, print any of them.

Examples
input
4 2
1 2 2 3
output
1 2
input
8 3
1 1 2 2 3 3 4 5
output
2 5
input
7 4
4 7 7 4 7 4 7
output
-1 -1
Note
In the first sample among numbers a1 and a2 there are exactly two distinct numbers.

In the second sample segment [2, 5] is a minimal by inclusion segment with three distinct numbers, but it is not minimal in length among such segments.

In the third sample there is no segment with four distinct numbers.
模拟过程 但是这道题比较吃题意 题意理解不好很容易wa
大致思想就是从首先从左到右搜到有效的界限区间
固定右节点然后
从左到右搜索左节点

#include <iostream>
#include <cmath>
#include <cstring>
using namespace std;
int a[100001];
bool vis[100001]; //标记记录量
int main()
{
    int n,k;
    int l=0,r=0;
    int sum=0;
    cin>>n>>k;
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
        if(vis[a[i]]==0) //遍历记录不重复数据的个数
        {
            sum++;
            vis[a[i]]=1;
        }
    }
    if(sum<k) //如果数据中包含不同的数据小于要求 k个直接舍去结束程序
    {
       cout<<"-1 -1"<<endl;
       return 0;
    }
    sum=0;
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)  //先从左到右搜索满足的界限
    {
        if(vis[a[i]]==0)
        {
            sum++;
            vis[a[i]]=1;
            if(sum==k)  //遍历搜到右节点并记录节点位置
            {
                r=i;
                break;
            }
        }
    }
   sum=0;
   memset(vis,0,sizeof(vis));
   for(int i=r;i>=1;i--)  //再从右向左在满足的界限内搜索左节点
   {
      if(vis[a[i]]==0)
      {
        sum++;
        vis[a[i]]=1;
        if(sum==k) //搜索左节点并记录
        {
            l=i;
            break;
        }
      }
  }
   cout<<l<<" "<<r<<endl;
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值