链接: https://vjudge.net/problem/ZOJ-3201
Describtion
You’re given a tree with weights of each node, you need to find the maximum subtree of specified size of this tree.
Tree Definition
A tree is a connected graph which contains no cycles.
Input
There are several test cases in the input.
The first line of each case are two integers N(1 <= N <= 100), K(1 <= K <= N), where N is the number of nodes of this tree, and K is the subtree’s size, followed by a line with N nonnegative integers, where the k-th integer indicates the weight of k-th node. The following N - 1 lines describe the tree, each line are two integers which means there is an edge between these two nodes. All indices above are zero-base and it is guaranteed that the description of the tree is correct.
Output
One line with a single integer for each case, which is the total weights of the maximum subtree.
Sample Input
3 1
10 20 30
0 1
0 2
3 2
10 20 30
0 1
0 2
Sample Output
30
40
题意: 寻找一棵节点数为 k 的子树,保证其节点的权值和最大;
思路:树形dp,不过这里比较特殊,用了类似于背包的写法; dp [ root ] [ j ]表示的是在节点为 root 时,其子树的节点数为 j 个时的权值和;
状态转移方程:
dp[root ] [ j ] = max ( dp[ root ][ j ],dp[ root ][ j-k ]+dp[ child ] [k] );
代码:
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
int n,m,dp[110][110];// dp[root][j]表示的是在节点为 root 时,其子树的节点数为 j 个时的权值和;
vector<int > tree[110];
void dfs(int root,int father)// root当前节点和父亲节点;
{
for(int i=0;i<tree[root].size();i++)
{
int child=tree[root][i];
if(child==father) continue; //保证每个节点遍历一次,不重复;
dfs(child,root);
for(int j=m;j>=0;j--) //背包; 从后往前; 保证状态只用一次;
{
for(int k=1;k<j;k++)
dp[root][j]=max(dp[root][j],dp[root][j-k]+dp[child][k]);
}
}
return ;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=0;i<=n;i++)
tree[i].clear();
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++) scanf("%d",&dp[i][1]);
for(int i=1;i<=n-1;i++)
{
int x,y;
scanf("%d%d",&x,&y);
tree[x].push_back(y);
tree[y].push_back(x);
}
dfs(1,-1);
int ma=-1;
for(int i=0;i<n;i++) ma=max(ma,dp[i][m]); //寻找最大值;
printf("%d\n",ma);
}
return 0;
}