由 a ∗ x ≡ 1 ( m o d    b ) a*x \equiv1 (\mod b) a∗x≡1(modb) 推导为扩展欧几里得
- -> a ∗ x m o d    b = = 1 m o d    b a*x \mod b == 1 \mod b a∗xmodb==1modb
- -> a ∗ x m o d    b = 1 a*x \mod b =1 a∗xmodb=1
- 即->
a
∗
x
=
n
∗
b
+
1
a*x = n*b+1
a∗x=n∗b+1(
n
是常数) - -> a ∗ x − n ∗ b = 1 a*x-n*b=1 a∗x−n∗b=1
- ->
a
∗
x
+
y
∗
b
=
1
a*x+y*b=1
a∗x+y∗b=1 (
y = -n
,常数无影响)
模板:
#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
int exgcd(int a,int b,long long & x,long long & y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int res = exgcd(b,a%b,x,y);
// 回溯的时候进行 推倒x,y
long long temp = y;
y = x - (a/b)*y;
x = temp;
return res;
}
int main() {
int a,b;
long long x,y;
cin >> a >> b;
exgcd(a,b,x,y);
if (x > 0) {
while (x > 0)
x -= abs(b);
x += abs(b);
cout << x << endl;
}
else {
while (x < 0)
x += abs(b);
cout << x << endl;
}
return 0;
}