N (1 ≤ N ≤ 100) cows, conveniently numbered 1…N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
- Line 1: Two space-separated integers: N and M
- Lines 2…M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
- Line 1: A single integer representing the number of cows whose ranks can be determined
SampleInput
5 5
4 3
4 2
3 2
1 2
2 5
SampleOutput
2
给你n头牛 m种关系 每行 x y 表示 x排名大于y 问你有多少头牛的排名是确定的。。看网上说什么闭包 拓扑排序啊 啥的 其实数据范围那么小 暴力大法就好了
#include<iostream>
using namespace std;
int main()
{
int v[105][105]= {0};
int n,m;
cin>>n>>m;
while(m--)
{
int x,y;
cin>>x>>y;
v[y][x]=1;
}
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
for(int k=1; k<=n; k++)
if(v[j][i]&&v[i][k])
v[j][k]=1;
int sum=0;
for(int i=1; i<=n; i++)
{
int s=0;
for(int j=1; j<=n; j++)
s+=v[i][j]+v[j][i];
if(s==n-1)
sum++;
}
cout<<sum<<endl;
}
解释下代码吧 v【i】【j】 =1 说明i的排名小于j 然后比如有v【i】【j】==1&&v【j】【k】==1
那么是不是一定有v【i】【k】==1
思考一下 我们要知道这头牛的排名 是不是一定要知道其他牛跟他的排名关系 是大于还是小于 所以我们如果想知道牛x的排名 只需要遍历加v【x】【j】和v【j】【x】 当两个都为0时候说明x与j的关系不确定谁排名靠前 有确切的关系 就说明j排名大于他或者小于他 也就是v值等于1 当sum满足n-1时候 说明牛x的排名是确切的