题目描述:
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter ‘e’. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T’s is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {‘A’, ‘B’, ‘C’, …, ‘Z’} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with the word W, a string over {‘A’, ‘B’, ‘C’, …, ‘Z’}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
One line with the text T, a string over {‘A’, ‘B’, ‘C’, …, ‘Z’}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN
Sample Output
1
3
0
题意:给出两个字符串,求第二个字符串中有多少个第一个字符串。
分析:
本题的第一反应,依次匹配。但是看到字符串的长度,便可知道这种朴素的匹配方式一定是会超时的。 所以在考虑就只能是KMP匹配了。
对于KMP匹配而言,只要找出next数组就不成问题了。
具体代码如下:
#include"stdio.h"
#include"string.h"
//得到next数组的函数
void Get_next(int next[],char word[])
{
int i,len,j;
len=strlen(word);
next[0]=-1;
i=0;
j=-1;
while(i<len)
{
if(j==-1||word[i]==word[j])
{
i++;j++;
if(word[i]==word[j])
next[i]=next[j];
else
next[i]=j;
}
else
j=next[j];
}
}
//KMP匹配
int Index_KMP(char text[],char word[],int next[])
{
int i,j,len,lenw;
int count=0;
len=strlen(text);
lenw=strlen(word);
i=0;j=0;
//这次不是单纯的匹配成功就好。所以一定要匹配到text数组的最后一个元素
while(i<len)
{
if(j==-1||text[i]==word[j])
{
i++;j++;
if(j==lenw)//j到了word字符下的最后一个下标。即匹配成功
{
count++;//匹配成功次数++
j=next[j];//在这里我们假设最后一个为匹配成功,从而将j回溯
}
}
else
j=next[j];
}
return count;
}
int main()
{
int T;
char word[10001];
char text[1000001];
int next[10001];
int i,j,count;
while(~scanf("%d",&T))
{
while(T--)
{
scanf("%s",word);
scanf("%s",text);
Get_next(next,word);
count=Index_KMP(text,word,next);
printf("%d\n",count);
}
}
}