题目链接:https://ac.nowcoder.com/acm/problem/20471
题意:给你一个矩形,0,1,表示不同颜色。让你从中找出最大的正方形和矩形的区域满足相邻的格子颜色不相同。
思路:
悬线法。悬线法是很常用的来解决最大子矩形问题的动态规划算法。
首先,讲一下思想:我们先可以找到每个格子
m
p
(
i
,
j
)
mp(i,j)
mp(i,j)可以满足要求的最左边
L
(
i
,
j
)
L(i,j)
L(i,j)和最右边
R
(
i
,
j
)
R(i,j)
R(i,j)位置。一个矩形是由四边构成的,现在我们已经找到了三边,还有上边
u
p
(
i
,
j
)
up(i,j)
up(i,j)。上边可以由
u
p
(
i
−
1
,
j
)
up(i-1,j)
up(i−1,j)得来,表示网上走,可以达到的最大长度。
递推公式:
在满足题意的要求后:
U
P
:
u
p
[
i
]
[
j
]
=
u
p
[
i
−
1
]
[
j
]
+
1
UP:up[i][j] = up[i-1][j] + 1
UP:up[i][j]=up[i−1][j]+1
R : m i n ( R [ i ] [ j ] , R [ i − 1 ] , [ j ] ) R:min(R[i][j],R[i-1],[j]) R:min(R[i][j],R[i−1],[j])
L : m a x ( L [ i ] [ j ] , L [ i − 1 ] [ j ] ) L: max(L[i][j],L[i-1][j]) L:max(L[i][j],L[i−1][j])
#include<algorithm>
#include<string.h>
#include<iostream>
#include<stdio.h>
#include<string>
#include<math.h>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define emplace_back push_back
#define pb push_back
using namespace std;
typedef long long LL;
const int mod = 1e9 + 7;
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;
const int N = 2e3 + 10;
int mp[N][N];
int l[N][N];
int r[N][N];
int up[N][N];
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n;i++)
{
for (int j = 1; j <= m;j++)
{
scanf("%d", &mp[i][j]);
}
}
for (int i = 1; i <= n;i++)
{
for (int j = 1; j <= m;j++)
{
l[i][j] = j;
r[i][j] = j;
up[i][j] = 1;
}
}
for (int i = 1; i <= n;i++)
{
for (int j = m-1; j>=1;j--)
{
if(mp[i][j]!=mp[i][j+1])
{
r[i][j] = r[i][j + 1];
}
}
for (int j = 2; j<=m;j++)
{
if(mp[i][j]!=mp[i][j-1])
{
l[i][j] = l[i][j - 1];
}
}
}
int ans1 = 1, ans2 = 1;
for (int i = 2; i <= n;i++)
{
for (int j = 1; j <= m;j++)
{
if(mp[i-1][j]!=mp[i][j])
{
up[i][j] = up[i - 1][j]+1;
l[i][j] = max(l[i][j], l[i - 1][j]);
r[i][j] = min(r[i][j], r[i - 1][j]);
}
int len = r[i][j] - l[i][j] + 1;
ans1 = max(ans1, min(len, up[i][j]));
ans2 = max(ans2, len * up[i][j]);
}
}
printf("%d\n%d\n", ans1 * ans1, ans2);
return 0;
}