搭建架构

import torch
import torchvision
from torch import nn
from torch.nn import Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10("./data",train=True,transform=torchvision.transforms.ToTensor(),download=True)
data_load=DataLoader(dataset,batch_size=64,drop_last=True)
class My_mod(nn.Module):
def __init__(self):
super(My_mod,self).__init__()
self.conv1=nn.Conv2d(3,32,5,1,2)
self.maxpool=nn.MaxPool2d(2)
self.conv2=nn.Conv2d(32,32,5,1,2)
self.conv3=nn.Conv2d(32,64,5,1,2)
self.relu=nn.ReLU()
self.flatten=Flatten()
self.linear=nn.Linear(1024,10)
self.model=nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
Flatten(),
nn.Linear(1024, 10)
)
def forward(self,x):
x=self.model(x)
return x
my_mod=My_mod()
for data in data_load:
img,tar=data
output=my_mod(img)
print(output.shape)
writer=SummaryWriter("./learb_log")
img=torch.randn((64,3,32,32))
writer.add_graph(my_mod,img)
writer.close()
TensorBoard 显示网络架构
