BIOS14: ONE-WAY ANOVA(单因素方差分析) using R

这篇博客介绍了如何使用R进行单因素方差分析(ANOVA)及其后续检验,包括Kruskal-Wallis检验。内容涵盖了ANOVA的基本原理、假设,以及数据导入、模型构建、假设检验、结果解释等步骤,并通过具体实例演示了如何进行posthoc测试和计划对比。此外,还讨论了当ANOVA假设不成立时,如何使用Kruskal-Wallis非参数检验作为替代方法。

NOTES

1 Intruduction of ANOVA

1.1 terminology

If we have 4 groupps of samples, with mean μ1,μ2,μ3,μ4\mu_1, \mu_2, \mu_3, \mu_4μ1,μ2,μ3,μ4, respectively. If we use t-test to test whether the means of 4 population are equle, we have to repeat 6 times t-test.
If all tests are made at some specified significance level (the possibility of error I α\alphaα), the overall level of 6 tests together will be 1−(1−α)6=0.625>>0.051-(1-\alpha)^6 = 0.625 >> 0.051(1α)6=0.625>>0.05.

Generally speaking, with the increase of the times of carrying on the significant test, the significant level will decrease.

ANOVA (analysis of variance) is used to test equality of multiple overall mean value.

Suppose we want to compare the quality of different industries according to the number of complaints received.

Here, the object be tested (diferent industries) is defined as factor, and the proformence of the factor(the number of complaints received) is defined as treatment. One-way anova means there are only one factor.

1.2 Principles and basic ideas

  1. describe with plot
    Using scatter plot to explore the data, and check the diference.
  2. error separation
    SST: Reflecting the error of all datas.
    SSE: Reflecting the with-in group error.
    SSA: Reflecting the group error.
  3. error analysis
    Analyse where the error comes from, with-in group or between group.

1.3 Assumption

  1. The populations are normal distributions.
  2. The populations have the same variance.
  3. observation is independent.

Typically:
H0:μ1=μ2=...=μkH1:μi≠μjfor some pair(i,j) H_0: \mu_1=\mu_2=...=\mu_k \\ H_1: \mu_i \ne \mu_j\quad for\ some\ pair(i, j) H0:μ1=μ2=...=μkH1:μi=μjfor some pair(i,j)

Exrcise

Start by installing (if needed) and loading:

  • car
  • lmtest
  • multcomp

One-way anova analysis is used when we want to see if the mean of a continuous variable differs between groups (i.e. between levels of a single categorical variable, a.k.a. factor). It is a generalisation of the t-test, and can be applied to more than two groups. The significance of the categorical variable depends on the relationship between the within-group variance and the among-group variance. If the differences between groups are large compared to the variation within each group, then the categorical variable is likely to be significant. If you are comparing more than two groups, some follow-up analysis (a posthoc test or planned comparison/contrast) is usually necessary to determine exactly which groups differ from each other.

One-way anova with posthoc test

We will start off with an example, an analysis of how Daphnia growth rates depend on what type of parasite individuals are infected with. There were 4 treatments; control and three different species of parasite.

1 Data import and exploration

daphnia = read.csv("daphniagrowth.csv")
boxplot(growth.rate~parasite, data = daphnia)

在这里插入图片描述

2 Construct one-way anova model

Believe it or not, but a one-way anova is just another type of linear model. R knows that this data should be analysed using a one-way anova because parasiteis a factor. Because of the flexibility of the linear

在执行配对比较图(PairedComparisonPlot)时,出现 Two-Way ANOVA 计算错误(错误代码 -98),通常与数据格式、设计结构或缺失值相关。以下是可能导致该问题的常见原因及解决方案: ### 数据输入要求 Two-Way ANOVA 需要满足特定的数据结构要求。数据必须是平衡设计(balanced design),即每个因子组合下的样本数量相同[^1]。如果数据不平衡,例如某些组别缺少观测值,将导致模型无法正确估计方差成分,从而引发计算错误。 **解决方案:** - 检查因子变量(Factor A 和 Factor B)的所有组合是否具有相同的重复次数。 - 确保没有缺失值(如空单元格或 NaN 值)。如果有缺失值,需进行插补处理或删除不完整的记录。 ### 因子水平定义 因子水平必须被正确定义为分类变量(categorical variable)。如果因子水平被误识别为连续变量(numeric variable),则会导致模型拟合失败。 **解决方案:** - 在 Origin 中确认 Factor A 和 Factor B 的列类型设置为“Categorical”。 - 若使用脚本调用 X-Function,请确保 `factorA` 和 `factorB` 参数传递的是字符串或整型变量,而非浮点数。 ### 重复测量设计 若实验设计涉及重复测量(repeated measures),需明确指定该选项。Two-Way ANOVA 默认假设所有观测独立,而重复测量设计违反了这一假设,可能导致计算异常。 **解决方案:** - 如果实验设计包含重复测量,应在 PairedComparisonPlot 设置中启用 `Repeated Measures` 选项。 - 若软件版本不支持重复测量 ANOVA,可考虑使用混合效应模型(Mixed Effects Model)替代。 ### 示例代码(Origin C 或 LabTalk 调用 PairedComparisonPlot X-Function) 以下是一个简化版的 LabTalk 脚本示例,用于调用 `pairedc comparisonplot` 并指定 Two-Way ANOVA 设置: ```labtalk // 假设数据位于工作表 "Data" 中,列 A 为响应变量,列 B 和 C 为因子 worksheet -s Data!; pairedc input:=col(1) factorA:=col(2) factorB:=col(3) test:=anova2; ``` 确保所有输入列无缺失值,并且因子列已正确设置为分类变量。 ### 其他潜在问题 - **样本量过小**:每个因子组合下样本数应至少为 2。若仅有一个观测值,则无法估计交互效应和误差项。 - **因子顺序不当**:部分软件对因子顺序敏感,尝试交换 Factor A 和 Factor B 后重新运行。 - **数值精度问题**:若响应变量数值范围过大或存在极端离群值,可能导致矩阵求逆失败。建议标准化数据后再进行分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值