传输线模型(分布参数模型)

设无限长均匀传输线为无穷多个无限小线元级联而成。
等效电路
其中: z为线长度坐标

物理量★符号单位
线元长度∆zm
单位长度上的电阻R Ω / m \Omega/m Ω/m
单位长度上的电导G S / m S/m S/m
单位长度上的电感L H / m H/m H/m
单位长度上的电容C F / m F/m F/m

电压、电流时域方程
v ( z , t ) = R Δ z i ( z , t ) + L Δ z ∂ i ( z , t ) ∂ t + v ( z + Δ z , t ) v(z,t) = R\Delta zi(z,t) + L\Delta z\frac{{\partial i(z,t)}}{{\partial t}} + v(z + \Delta z,t) v(z,t)=RΔzi(z,t)+LΔzti(z,t)+v(z+Δz,t)
i ( z , t ) = G Δ z v ( z + Δ z , t ) + C Δ z ∂ v ( z + Δ z , t ) ∂ t + i ( z + Δ z , t ) i(z,t) = G\Delta zv(z + \Delta z,t) + C\Delta z\frac{{\partial v(z + \Delta z,t)}}{{\partial t}} + i(z + \Delta z,t) i(z,t)=GΔzv(z+Δz,t)+CΔztv(z+Δz,t)+i(z+Δz,t)

v ( z + Δ z , t ) − v ( z , t ) Δ z + R i ( z , t ) + L ∂ i ( z , t ) ∂ t = 0 \frac{{v(z + \Delta z,t) - v(z,t)}}{{\Delta z}} + Ri(z,t) + L\frac{{\partial i(z,t)}}{{\partial t}} = 0 Δzv(z+Δz,t)v(z,t)+Ri(z,t)+Lti(z,t)=0
i ( z + Δ z , t ) − i ( z , t ) Δ z + G v ( z + Δ z , t ) + C ∂ v ( z + Δ z , t ) ∂ t = 0 \frac{{i(z + \Delta z,t) - i(z,t)}}{{\Delta z}} + Gv(z + \Delta z,t) + C\frac{{\partial v(z + \Delta z,t)}}{{\partial t}} = 0 Δzi(z+Δz,t)i(z,t)+Gv(z+Δz,t)+Ctv(z+Δz,t)=0

Δ z → 0 \Delta z \to 0 Δz0
∂ v ( z , t ) ∂ z + R i ( z , t ) + L ∂ i ( z , t ) ∂ t = 0 \frac{{\partial v(z,t)}}{{\partial z}} + Ri(z,t) + L\frac{{\partial i(z,t)}}{{\partial t}} = 0 zv(z,t)+Ri(z,t)+Lti(z,t)=0
∂ i ( z , t ) ∂ z + G v ( z , t ) + C ∂ v ( z , t ) ∂ t = 0 \frac{{\partial i(z,t)}}{{\partial z}} + Gv(z,t) + C\frac{{\partial v(z,t)}}{{\partial t}} = 0 zi(z,t)+Gv(z,t)+Ctv(z,t)=0

复数法(相量法)表示单频正弦信号
V ( z ) = R Δ z I ( z ) + j ω L Δ z I ( z ) + V ( z + Δ z ) V(z) = R\Delta zI(z) + j\omega L\Delta zI(z) + V(z + \Delta z) V(z)=RΔzI(z)+jωLΔzI(z)+V(z+Δz)
I ( z ) = G Δ z V ( z + Δ z ) + j ω C Δ z V ( z + Δ z ) + I ( z + Δ z ) I(z) = G\Delta zV(z + \Delta z) + j\omega C\Delta zV(z + \Delta z) + I(z + \Delta z) I(z)=GΔzV(z+Δz)+jωCΔzV(z+Δz)+I(z+Δz)

V ( z + Δ z ) − V ( z ) Δ z + [ R + j ω L ] I ( z ) = 0 \frac{{V(z + \Delta z) - V(z)}}{{\Delta z}} + \left[ {R + j\omega L} \right]I(z) = 0 ΔzV(z+Δz)V(z)+[R+jωL]I(z)=0
I ( z + Δ z ) − I ( z ) Δ z + [ G + j ω C ] V ( z + Δ z ) = 0 \frac{{I(z + \Delta z) - I(z)}}{{\Delta z}} + \left[ {G + j\omega C} \right]V(z + \Delta z) = 0 ΔzI(z+Δz)I(z)+[G+jωC]V(z+Δz)=0

Δ z → 0 \Delta z \to 0 Δz0
d V ( z ) d z + [ R + j ω L ] I ( z ) = 0 \frac{{dV(z)}}{{dz}} + \left[ {R + j\omega L} \right]I(z) = 0 dzdV(z)+[R+jωL]I(z)=0
d I ( z ) d z + [ G + j ω C ] V ( z ) = 0 \frac{{dI(z)}}{{dz}} + \left[ {G + j\omega C} \right]V(z) = 0 dzdI(z)+[G+jωC]V(z)=0

d V ( z ) d z + [ R + j ω L ] I ( z ) = 0 ( 1 ) \frac{{dV(z)}}{{dz}} + \left[ {R + j\omega L} \right]I(z) = 0(1) dzdV(z)+[R+jωL]I(z)=0(1)
d I ( z ) d z + [ G + j ω C ] V ( z ) = 0 ( 2 ) \frac{{dI(z)}}{{dz}} + \left[ {G + j\omega C} \right]V(z) = 0(2) dzdI(z)+[G+jωC]V(z)=0(2)
(1)式对z求导再将(2)代入得(3),同理可得(4)
d 2 V ( z ) d z 2 − [ R + j ω L ] [ G + j ω C ] V ( z ) = 0 ( 3 ) \frac{{{d^2}V(z)}}{{d{z^2}}} - \left[ {R + j\omega L} \right]\left[ {G + j\omega C} \right]V(z) = 0(3) dz2d2V(z)[R+jωL][G+jωC]V(z)=0(3)
d 2 I ( z ) d z 2 − [ R + j ω L ] [ G + j ω C ] I ( z ) = 0 ( 4 ) \frac{{{d^2}I(z)}}{{d{z^2}}} - \left[ {R + j\omega L} \right]\left[ {G + j\omega C} \right]I(z) = 0(4) dz2d2I(z)[R+jωL][G+jωC]I(z)=0(4)
γ = [ R + j ω L ] [ G + j ω C ] = α + j β , α ≥ 0 , β ∈ R \gamma {\rm{ = }}\sqrt {\left[ {R + j\omega L} \right]\left[ {G + j\omega C} \right]} {\rm{ = }}\alpha {\rm{ + }}j\beta,\alpha \ge 0,\beta∈R γ=[R+jωL][G+jωC] =α+jβ,α0,βR

传输方程
d 2 V ( z ) d 2 z − γ 2 V ( z ) = 0 \frac{{{d^2}V(z)}}{{{d^2}z}} - {\gamma ^2}V(z) = 0 d2zd2V(z)γ2V(z)=0
d 2 I ( z ) d 2 z − γ 2 I ( z ) = 0 \frac{{{d^2}I(z)}}{{{d^2}z}} - {\gamma ^2}I(z) = 0 d2zd2I(z)γ2I(z)=0

传输方程的解
V ( z ) = V 0 + e − γ z + V 0 − e γ z V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} V(z)=V0+eγz+V0eγz
I ( z ) = I 0 + e − γ z + I 0 − e γ z I(z) = {I_0}^ + {e^{ - \gamma z}} + {I_0}^ - {e^{\gamma z}} I(z)=I0+eγz+I0eγz
其中 V 0 + {V_0}^ + V0+ V 0 − {V_0}^ - V0 I 0 + {I_0}^ + I0+ I 0 − {I_0}^ - I0为复常数,与传输距离z无关
由传输线边界条件确定
四个参数中只有两个是独立的
方程中只有z是实数,其他均为复数

根据前面的方程(1)得
d V ( z ) d z + [ R + j ω L ] I ( z ) = 0 \frac{{dV(z)}}{{dz}} + \left[ {R + j\omega L} \right]I(z) = 0 dzdV(z)+[R+jωL]I(z)=0
I ( z ) = − 1 R + j ω L d V ( z ) d z I(z){\rm{ = }}\frac{{ - 1}}{{R + j\omega L}}\frac{{dV(z)}}{{dz}} I(z)=R+jωL1dzdV(z)
I ( z ) = γ R + j ω L ( V 0 + e − γ z − V 0 − e γ z ) I(z) = \frac{\gamma }{{R + j\omega L}}\left( {{V_0}^ + {e^{ - \gamma z}} - {V_0}^ - {e^{\gamma z}}} \right) I(z)=R+jωLγ(V0+eγzV0eγz)

特征阻抗
= 入射波电压 / 入射波电流 = - 反射波电压 / 反射波电流 ★
仅由自身分布参数决定
与信号源和负载无关
一般为复数,与频率有关
Z 0 = R + j ω L G + j ω C = r + j x = V 0 + I 0 + = − V 0 − I 0 − , r ≥ 0 , x ∈ R {Z_0}{\rm{ = }}\sqrt {\frac{{R + j\omega L}}{{G + j\omega C}}} = r + jx = \frac{{V_0^ + }}{{I_0^ + }} = \frac{{ - V_0^ - }}{{I_0^ - }},r\ge 0,x∈R Z0=G+jωCR+jωL =r+jx=I0+V0+=I0V0,r0,xR

I ( z ) = V 0 + Z 0 e − γ z − V 0 − Z 0 e γ z I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} I(z)=Z0V0+eγzZ0V0eγz
传输方程的解为
V ( z ) = V 0 + e − γ z + V 0 − e γ z V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} V(z)=V0+eγz+V0eγz
I ( z ) = V 0 + Z 0 e − γ z − V 0 − Z 0 e γ z I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} I(z)=Z0V0+eγzZ0V0eγz
注意:复数开方有两个值,根据其物理意义,取值要求 α ≥ 0 , r ≥ 0 , β , x \alpha \ge 0,r \ge 0,\beta,x α0,r0,β,x为任意实数(z的方向从源到负载)

复函数表达式中解出对应的时域函数
v ( z , t ) = R e { e j ω t V ( z ) } = e j ω t V ( z ) + e − j ω t V ∗ ( z ) 2 v(z,t) = {\mathop{\rm Re}\nolimits} \left\{ {{e^{j\omega t}}V(z)} \right\} = \frac{{{e^{j\omega t}}V(z) + {e^{ - j\omega t}}{V^ * }(z)}}{2} v(z,t)=Re{ejωtV(z)}=2ejωtV(z)+ejωtV(z)
假设 V 0 + = ∣ V 0 + ∣ e j φ + = ∣ V 0 + ∣ ( cos ⁡ φ + + j sin ⁡ φ + ) {V_0}^ + {\rm{ = }}\left| {{V_0}^ + } \right|{e^{j{\varphi ^ + }}}{\rm{ = }}\left| {{V_0}^ + } \right|\left( {\cos {\varphi ^ + } + j\sin {\varphi ^ + }} \right) V0+=V0+ejφ+=V0+(cosφ++jsinφ+)
V 0 − = ∣ V 0 − ∣ e j φ − {V_0}^ - {\rm{ = }}\left| {{V_0}^ - } \right|{e^{j{\varphi ^ - }}} V0=V0ejφ
V ( z ) = V 0 + e − γ z + V 0 − e γ z = ∣ V 0 + ∣ e j φ + e − α z − j β z + ∣ V 0 − ∣ e j φ − e α z + j β z V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} = \left| {{V_0}^ + } \right|{e^{j{\varphi ^ + }}}{e^{ - \alpha z - j\beta z}} + \left| {{V_0}^ - } \right|{e^{j{\varphi ^ - }}}{e^{\alpha z + j\beta z}} V(z)=V0+eγz+V0eγz=V0+ejφ+eαzjβz+V0ejφeαz+jβz
v ( z , t ) = R e { e j ω t V ( z ) } = ∣ V 0 + ∣ e − α z e j ( ω t − β z + φ + ) + ∣ V 0 − ∣ e α z e j ( ω t + β z + φ − ) = ∣ V 0 + ∣ e − α z cos ⁡ ( ω t − β z + ϕ + ) + ∣ V 0 − ∣ e α z cos ⁡ ( ω t + β z + ϕ − ) v(z,t) = {\mathop{\rm Re}\nolimits} \left\{ {{e^{j\omega t}}V(z)} \right\} = \left| {{V_0}^ + } \right|{e^{ - \alpha z}}{e^{j\left( {\omega t - \beta z + {\varphi ^ + }} \right)}} + \left| {{V_0}^ - } \right|{e^{\alpha z}}{e^{j\left( {\omega t + \beta z + {\varphi ^ - }} \right)}} = \left| {V_0^ + } \right|{e^{ - \alpha z}}\cos (\omega t - \beta z + {\phi ^ + }) + \left| {V_0^ - } \right|{e^{\alpha z}}\cos (\omega t + \beta z + {\phi ^ - }) v(z,t)=Re{ejωtV(z)}=V0+eαzej(ωtβz+φ+)+V0eαzej(ωt+βz+φ)=V0+eαzcos(ωtβz+ϕ+)+V0eαzcos(ωt+βz+ϕ)
同理可得电流波形的表达式

方程的物理意义

  1. 方程以复数形式描述了在单频正弦波激励下传输线各点上的电压和电流的幅度和相位
  2. 方程中z为实数。z的方向及电压电流的方向见参考图,从源向终端负载
  3. 传输线上任意点的电压表达式
    v ( z , t ) = ∣ V 0 + ∣ e − α z cos ⁡ ( ω t − β z + ϕ + ) + ∣ V 0 − ∣ e α z cos ⁡ ( ω t + β z + ϕ − ) v(z,t) = \left| {V_0^ + } \right|{e^{ - \alpha z}}\cos (\omega t - \beta z + {\phi ^ + }) + \left| {V_0^ - } \right|{e^{\alpha z}}\cos (\omega t + \beta z + {\phi ^ - }) v(z,t)=V0+eαzcos(ωtβz+ϕ+)+V0eαzcos(ωt+βz+ϕ)
    称方程中第一项为电压入射波,传播方向与z相同
    称方程中第二项为电压反射波,传播方向与z相反
    各点均由入射波与反射波叠加而成。

试求电压源电压Vs的时域波形表达式vs(t)

例:设有限长传输线的源端接理想电压源 V s V_s Vs,终端接负载 Z L = Z 0 = 50 Ω Z_L=Z0=50Ω ZL=Z0=50Ω
若传输线的长度为 l = 10 m l=10m l=10m γ = 0.1 + j π / 20 ( 1 / m ) γ=0.1+jπ/20(1/m) γ=0.1+jπ/201/m
测得负载电压 V L V_L VL的波形为 v L ( t ) = c o s ω t v_L(t)=cosωt vL(t)=cosωt
试求电压源电压 V s V_s Vs的时域波形表达式 v s ( t ) v_s(t) vs(t)
首先定义z的坐标
求电压源电压Vs的时域波形表达式
定义余弦函数为相位参考,峰值为幅度参考,则 V L = 1 V_L=1 VL=1
{ V ( z ) = V 0 + e − γ z + V 0 − e γ z I ( z ) = V 0 + Z 0 e − γ z − V 0 − Z 0 e γ z ⇒ { V ( 0 ) = V L = V 0 + + V 0 − I ( 0 ) = V L Z L = V 0 + Z 0 − V 0 − Z 0 \{ \begin{array}{l} V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}}\\ I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} \end{array} \Rightarrow \{ \begin{array}{l} V(0) = {V_L} = {V_0}^ + + {V_0}^ - \\ I(0) = \frac{{{V_L}}}{{{Z_L}}} = \frac{{{V_0}^ + }}{{{Z_0}}} - \frac{{{V_0}^ - }}{{{Z_0}}} \end{array} {V(z)=V0+eγz+V0eγzI(z)=Z0V0+eγzZ0V0eγz{V(0)=VL=V0++V0I(0)=ZLVL=Z0V0+Z0V0
V 0 + = V L 2 ( 1 + Z 0 Z L ) {V_0}^ + = \frac{{{V_L}}}{2}\left( {1 + \frac{{{Z_0}}}{{{Z_L}}}} \right) V0+=2VL(1+ZLZ0)
V 0 − = V L 2 ( 1 − Z 0 Z L ) {V_0}^ - = \frac{{{V_L}}}{2}\left( {1 - \frac{{{Z_0}}}{{{Z_L}}}} \right) V0=2VL(1ZLZ0)
代入 V L = 1 , Z 0 = Z L = 50 {V_L} = 1,{Z_0}{\rm{ = }}{Z_L}{\rm{ = }}50 VL=1,Z0=ZL=50 V 0 + = 1 , V 0 − = 0 V_0^ + = 1,V_0^ - = 0 V0+=1,V0=0

V ( z ) = e − γ z ⇒ V S = V ( − l ) = e γ l = e 1 + j π / 2 = j e V(z) = {e^{ - \gamma z}} \Rightarrow {V_S} = V( - l) = {e^{\gamma l}} = {e^{1 + j\pi /2}} = je V(z)=eγzVS=V(l)=eγl=e1+jπ/2=je
v s ( t ) = R e { V ( z ) e j ω t } = R e { j e ( cos ⁡ ω t + j sin ⁡ ω t ) } ≈ − 2.7 sin ⁡ ω t ( V ) {v_s}(t) ={\mathop{\rm Re}\nolimits} \left\{ {V(z)e^{j \omega t}} \right\}= {\mathop{\rm Re}\nolimits} \left\{ {je\left( {\cos \omega t + j\sin \omega t} \right)} \right\} \approx - 2.7\sin \omega t{\rm{ }}(V) vs(t)=Re{V(z)ejωt}=Re{je(cosωt+jsinωt)}2.7sinωt(V)

如果 Z L = 100 Ω Z_L=100Ω ZL=100Ω,传输线参数不变,则
V 0 + = V L 2 ( 1 + Z 0 Z L ) = 1 2 ( 1 + 50 100 ) = 3 4 {V_0}^ + = \frac{{{V_L}}}{2}\left( {1 + \frac{{{Z_0}}}{{{Z_L}}}} \right){\rm{ = }}\frac{1}{2}\left( {1 + \frac{{50}}{{100}}} \right) = \frac{3}{4} V0+=2VL(1+ZLZ0)=21(1+10050)=43
V 0 − = V L 2 ( 1 − Z 0 Z L ) = 1 4 {V_0}^ - = \frac{{{V_L}}}{2}\left( {1 - \frac{{{Z_0}}}{{{Z_L}}}} \right) = \frac{1}{4} V0=2VL(1ZLZ0)=41
V S = 3 4 e 1 + j π / 2 + 1 4 e − 1 − j π / 2 = j 4 ( 3 e − e − 1 ) {V_S} = \frac{3}{4}{e^{1 + j\pi /2}} + \frac{1}{4}{e^{ - 1 - j\pi /2}} = \frac{j}{4}\left( {3e - {e^{ - 1}}} \right) VS=43e1+jπ/2+41e1jπ/2=4j(3ee1)
v s ( t ) = 1 4 ( e − 1 − 3 e ) sin ⁡ ω t ( V ) {v_s}(t) = \frac{1}{4}\left( {{e^{ - 1}} - 3e} \right)\sin \omega t{\rm{ }}(V) vs(t)=41(e13e)sinωt(V)

关于传输线的计算问题★

一般说来在传输系数,特征阻抗 Z 0 {Z_0} Z0已知的条件下,传输线的计算问题主要是根据边界条件(z=0,z=l等)求出 V 0 − {V_0}^ - V0 V 0 + {V_0}^ + V0+,从而完善电压电流方程
解题时注意z坐标的建立,原点终点的坐标值的确定
尽管方程描述的是分布参数模型
V ( z ) = V 0 + e − γ z + V 0 − e γ z V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} V(z)=V0+eγz+V0eγz
I ( z ) = V 0 + Z 0 e − γ z − V 0 − Z 0 e γ z I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} I(z)=Z0V0+eγzZ0V0eγz
但任何一个z固定的点都可等效为集总参数模型

假设所有参数的单位为标准单位,已知传输线参数
Z 0 = 50 , γ = 0.01 + j 0.2 π {Z_0}{\rm{ = 50 }},\gamma = 0.01 + j0.2\pi Z0=50,γ=0.01+j0.2π

1、若信号源电压幅度V(0)=10,输出电流 I(0)=0.2,传输线长度 l = 3 l=3 l=3
求终端负载电阻 Z L {Z_L} ZL
建立z坐标
电源点z=0
终端点 z = l = 3 z=l=3 z=l=3
边界条件V(0)=10,I(0)=0.2
解出 V 0 − {V_0}^ - V0 V 0 + {V_0}^ + V0+
求出V(3),I(3)
Z L = V ( 3 ) / I ( 3 ) {Z_L} = V(3)/I(3) ZL=V(3)/I(3)

2、已知信号源电压幅度V(-4)=10,传输线长度 l = 4 l=4 l=4,终端端接电阻 Z L = 60 {Z_L}=60 ZL=60
电源输出电流
电源点为 z = − l = − 4 z=-l=-4 z=l=4
终端点为z=0
边界条件 Z L = V ( 0 ) / I ( 0 ) = 60 {Z_L} = V(0)/I(0)=60 ZL=V(0)/I(0)=60建立 V 0 − {V_0}^ - V0 V 0 + {V_0}^ + V0+的关系
再利用边界条件V(-4)=10,求出 V 0 − {V_0}^ - V0 V 0 + {V_0}^ + V0+
最后代入电流方程求出I(-4)

端接负载的无耗传输线

仅由储能器件(C,L)而无耗能器件(R,G)构成的传输线叫做无耗传输线,传输参数中R=G=0
γ = ( R + j ω L ) ( G + j ω C ) = j ω L C = j β \gamma = \sqrt {\left( {R + j\omega L} \right)\left( {G + j\omega C} \right)} = j\omega \sqrt {LC} = j\beta γ=(R+jωL)(G+jωC) =jωLC =jβ虚数★
特征阻抗
Z 0 = ( R + j ω L ) ( G + j ω C ) = L C {Z_0} = \sqrt {\frac{{\left( {R + j\omega L} \right)}}{{\left( {G + j\omega C} \right)}}} = \sqrt {\frac{L}{C}} Z0=(G+jωC)(R+jωL) =CL 实数★

V ( z ) = V 0 + e − γ z + V 0 − e γ z V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} V(z)=V0+eγz+V0eγz
I ( z ) = V 0 + Z 0 e − γ z − V 0 − Z 0 e γ z I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} I(z)=Z0V0+eγzZ0V0eγz

V 0 + = V L 2 ( 1 + Z 0 Z L ) {V_0}^ + = \frac{{{V_L}}}{2}\left( {1 + \frac{{{Z_0}}}{{{Z_L}}}} \right) V0+=2VL(1+ZLZ0)
V 0 − = V L 2 ( 1 − Z 0 Z L ) {V_0}^ - = \frac{{{V_L}}}{2}\left( {1 - \frac{{{Z_0}}}{{{Z_L}}}} \right) V0=2VL(1ZLZ0)
电压反射系数

电压反射系数

Γ ( z ) = 反 射 电 压 波 入 射 电 压 波 = V − e γ z V + e − γ z = V − V + e 2 γ z \Gamma (z) = \frac{{反射电压波}}{{入射电压波}}{\rm{ = }}\frac{{{V^ - }{e^{\gamma z}}}}{{{V^ + }{e^{ - \gamma z}}}} = \frac{{{V^ - }}}{{{V^ + }}}{e^{2\gamma z}} Γ(z)==V+eγzVeγz=V+Ve2γz
无耗传输线的电压反射系数
Γ ( z ) = Γ 0 e j 2 β z \Gamma \left( z \right) = {\Gamma _0}{e^{j2\beta z}} Γ(z)=Γ0ej2βz
Γ 0 = Γ ( 0 ) = V − V + {\Gamma _0} = \Gamma (0) = \frac{{{V^ - }}}{{{V^ + }}} Γ0=Γ(0)=V+V
d = − z d=-z d=z,沿反射波传播方向定义的电压反射系数
Γ ( d ) = Γ 0 e − j 2 β d \Gamma \left( d \right) = {\Gamma _0}{e^{ - j2\beta d}} Γ(d)=Γ0ej2βd
在端接点上
{ V 0 + = V L 2 ( 1 + Z 0 Z L ) V 0 − = V L 2 ( 1 − Z 0 Z L ) \left\{ \begin{array}{l} {V_0}^ + = \frac{{{V_L}}}{2}\left( {1 + \frac{{{Z_0}}}{{{Z_L}}}} \right)\\ {V_0}^ - = \frac{{{V_L}}}{2}\left( {1 - \frac{{{Z_0}}}{{{Z_L}}}} \right) \end{array} \right. V0+=2VL(1+ZLZ0)V0=2VL(1ZLZ0)
Γ 0 = V 0 − V 0 + = Z L − Z 0 Z L + Z 0 {\Gamma _0} = \frac{{{V_0}^ - }}{{{V_0}^ + }} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}} Γ0=V0+V0=ZL+Z0ZLZ0★(2.48)(2.52)
Z ( 0 ) = Z L = Z 0 1 + Γ 0 1 − Γ 0 Z(0)={Z_L} = {Z_0}\frac{{1 + {\Gamma _0}}}{{1 - {\Gamma _0}}} Z(0)=ZL=Z01Γ01+Γ0★(2.51)
推广到传输线的任意点上 Γ ( z ) = Z ( z ) − Z 0 Z ( z ) + Z 0 {\rm{ }}\Gamma (z) = \frac{{Z(z) - {Z_0}}}{{Z(z) + {Z_0}}} Γ(z)=Z(z)+Z0Z(z)Z0
Z ( z ) Z(z) Z(z)为传输线z点向负载端看的等效阻抗

无耗传输线上电压或电流波可用反射系数表示为
V ( z ) = V 0 + e − γ z + V 0 − e γ z = V 0 + ( e − j β z + Γ 0 e j β z ) = V 0 + e − j β z [ 1 + Γ ( z ) ] V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} = {V_0}^ + \left( {{e^{ - j\beta z}} + {\Gamma _0}^{}{e^{j\beta z}}} \right) = {V_0}^ + {e^{ - j\beta z}}\left[ {1 + \Gamma (z)} \right] V(z)=V0+eγz+V0eγz=V0+(ejβz+Γ0ejβz)=V0+ejβz[1+Γ(z)]
I ( z ) = V 0 + Z 0 e − γ z − V 0 − Z 0 e γ z = V 0 + Z 0 ( e − j β z − Γ 0 e j β z ) = V 0 + Z 0 e − j β z [ 1 − Γ ( z ) ] I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} = \frac{{{V_0}^ + }}{{{Z_0}}}\left( {{e^{ - j\beta z}} - {\Gamma _0}^{}{e^{j\beta z}}} \right) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - j\beta z}}\left[ {1 - \Gamma (z)} \right] I(z)=Z0V0+eγzZ0V0eγz=Z0V0+(ejβzΓ0ejβz)=Z0V0+ejβz[1Γ(z)]

Γ 0 = V 0 − V 0 + = Z L − Z 0 Z L + Z 0 {\Gamma _0} = \frac{{{V_0}^ - }}{{{V_0}^ + }} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}} Γ0=V0+V0=ZL+Z0ZLZ0
反射系数的几个常用值★ [-1,1]
终端匹配 Z L = Z 0 ⇒ Γ 0 = 0 {Z_L} = {Z_0} \Rightarrow {\Gamma _0} = 0 ZL=Z0Γ0=0
终端短路 Z L = 0 ⇒ Γ 0 = − 1 {Z_L} = 0 \Rightarrow {\Gamma _0} = - 1 ZL=0Γ0=1
终端开路 Z L = ∞ ⇒ Γ 0 = 1 {Z_L} = \infty \Rightarrow {\Gamma _0} = 1 ZL=Γ0=1

传播常数和相速

考察入射波在无耗传输线上的传输(无反射)
v + ( z , t ) = ∣ V 0 + ∣ cos ⁡ ( ω t − β z + ϕ + ) {v^ + }(z,t) = \left| {V_0^ + } \right|\cos (\omega t - \beta z + {\phi ^ + }) v+(z,t)=V0+cos(ωtβz+ϕ+)
选两个同相位的点观察,假设 ω t 1 − β   z 1 + ψ 1 = 0 \omega {t_1} - \beta \,{z_1} + {\psi _1} = 0 ωt1βz1+ψ1=0
t = t 1 t = t_1 t=t1时,A点在 z 1 z_1 z1
ω t 1 − β   z 1 + ψ 1 \omega {t_1} - \beta \,{z_1} + {\psi _1} ωt1βz1+ψ1
t = t 1 + △ t t = t_1+ △t t=t1+t时,A点在 z = z 1 + △ z z= z_1+△z z=z1+z
ω ( t 1 + Δ t ) − β ( z 1 + Δ z ) + ψ   1 \omega ({t_1} + \Delta t) - \beta ({z_1} + \Delta z) + \psi {\,_1} ω(t1+Δt)β(z1+Δz)+ψ1
传播常数和相速
相同相位点
ω t 1 − β   z 1 + ψ 1 = ω ( t 1 + Δ t ) − β ( z 1 + Δ z ) + ψ 1 \omega {t_1} - \beta \,{z_1} + {\psi _1} = \omega ({t_1} + \Delta t) - \beta ({z_1} + \Delta z) + {\psi _1} ωt1βz1+ψ1=ω(t1+Δt)β(z1+Δz)+ψ1
ω Δ t = β Δ z \omega \Delta t = \beta \Delta z ωΔt=βΔz
相同相位点的移动速度为相位速度相速
v p = lim ⁡ Δ t → 0 Δ z Δ t = ω β = 1 ε μ = C ε r μ r = λ f = λ ω / 2 π = ω / k {v_p} = \mathop {\lim }\limits_{\Delta t \to 0} \frac{{\Delta z}}{{\Delta t}} = \frac{\omega }{\beta }= \frac{1}{{\sqrt {\varepsilon \mu } }} = \frac{C}{{\sqrt {{\varepsilon _r}{\mu _r}} }} = \lambda f = \lambda \omega /2\pi = \omega /k vp=Δt0limΔtΔz=βω=εμ 1=εrμr C=λf=λω/2π=ω/k
群速度 v g = d ω d k {v_g} = \frac{{d\omega }}{{dk}} vg=dkdω
这种向前传播的波称之为行波
幅度不变,相位随z变化
v + ( z , t ) = ∣ V 0 + ∣ cos ⁡ ( ω t − β z + ϕ + ) {v^ + }(z,t) = \left| {V_0^ + } \right|\cos (\omega t - \beta z + {\phi ^ + }) v+(z,t)=V0+cos(ωtβz+ϕ+)
λ β = 2 π = ω T \lambda \beta = 2\pi = \omega T λβ=2π=ωT
T = 1 / f T=1/f T=1/f
λ = 2 π β = ω β T = v T = v f \lambda = \frac{{2\pi }}{\beta } = \frac{\omega }{\beta }T = vT{\rm{ = }}\frac{v}{f} λ=β2π=βωT=vT=fv
任何一个时间t上,z轴上的电压分布为一个正弦函数,该函数一个周期的长度=波长=正弦波在一个周期时间上沿z轴的移动距离

驻波

Γ 0 = V 0 − V 0 + = Z L − Z 0 Z L + Z 0 {\Gamma _0} = \frac{{{V_0}^ - }}{{{V_0}^ + }} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}} Γ0=V0+V0=ZL+Z0ZLZ0
反射系数的几个常用值
终端匹配 Z L = Z 0 ⇒ Γ 0 = 0 ⇒ S W R = 1 + ∣ Γ 0 ∣ 1 − ∣ Γ 0 ∣ = 1 {Z_L} = {Z_0} \Rightarrow {\Gamma _0} = 0 \Rightarrow SWR = \frac{{1 + \left| {{\Gamma _0}} \right|}}{{1 - \left| {{\Gamma _0}} \right|}}=1 ZL=Z0Γ0=0SWR=1Γ01+Γ0=1
终端短路 Z L = 0 ⇒ Γ 0 = − 1 ⇒ S W R = 1 + ∣ Γ 0 ∣ 1 − ∣ Γ 0 ∣ = ∞ {Z_L} = 0 \Rightarrow {\Gamma _0} = - 1 \Rightarrow SWR = \frac{{1 + \left| {{\Gamma _0}} \right|}}{{1 - \left| {{\Gamma _0}} \right|}}=\infty ZL=0Γ0=1SWR=1Γ01+Γ0=全反射
终端开路 Z L = ∞ ⇒ Γ 0 = 1 ⇒ S W R = 1 + ∣ Γ 0 ∣ 1 − ∣ Γ 0 ∣ = ∞ {Z_L} = \infty \Rightarrow {\Gamma _0} = 1 \Rightarrow SWR = \frac{{1 + \left| {{\Gamma _0}} \right|}}{{1 - \left| {{\Gamma _0}} \right|}}=\infty ZL=Γ0=1SWR=1Γ01+Γ0=全反射

只在原地振荡,不向前传播
驻波是由入射波和反射波叠加形成的,考察终端开/短路有限长传输线 Γ 0 = ± 1 {\Gamma _0} = \pm 1 Γ0=±1,零点设在端接负载上
V ( z ) = V 0 + e − γ z + V 0 − e γ z = V 0 + ( e − j β z + Γ 0 e j β z ) = V 0 + e − j β z [ 1 + Γ ( z ) ] V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} = {V_0}^ + \left( {{e^{ - j\beta z}} + {\Gamma _0}^{}{e^{j\beta z}}} \right) = {V_0}^ + {e^{ - j\beta z}}\left[ {1 + \Gamma (z)} \right] V(z)=V0+eγz+V0eγz=V0+(ejβz+Γ0ejβz)=V0+ejβz[1+Γ(z)]
V ( d ) = V 0 + ( e j β d ± e − j β d ) = { 2 V 0 + cos ⁡ β d 开 路 j 2 V 0 + sin ⁡ β d 短 路 V(d) = {V_0}^ + \left( {{e^{j\beta d}} \pm {e^{ - j\beta d}}} \right) = \left\{ \begin{array}{l} 2{V_0}^ + \cos \beta d开路\\ j2{V_0}^ + \sin \beta d短路 \end{array} \right. V(d)=V0+(ejβd±ejβd)={2V0+cosβdj2V0+sinβd

时域式
v ( t , d ) = R e { e j ω t V ( d ) } = { 2 ∣ V 0 + ∣ cos ⁡ β d cos ⁡ ( ω t + φ + ) − 2 ∣ V 0 + ∣ sin ⁡ β d sin ⁡ ( ω t + φ + ) v(t,d) = {\mathop{\rm Re}\nolimits} \left\{ {{e^{j\omega t}}V(d)} \right\} = \left\{ \begin{array}{l} 2\left| {{V_0}^ + } \right|\cos \beta d\cos \left( {\omega t + {\varphi ^ + }} \right)\\ -2\left| {{V_0}^ + } \right|\sin \beta d\sin \left( {\omega t + {\varphi ^ + }} \right) \end{array} \right. v(t,d)=Re{ejωtV(d)}={2V0+cosβdcos(ωt+φ+)2V0+sinβdsin(ωt+φ+)

v ( t , d ) = A cos ⁡ β d cos ⁡ ( ω t + φ ) = ∣ A cos ⁡ β d ∣ cos ⁡ ( ω t + φ ( z ) ) v(t,d) = A\cos \beta d\cos \left( {\omega t + \varphi } \right){\rm{ = }}\left| {A\cos \beta d} \right|\cos \left( {\omega t + \varphi (z)} \right) v(t,d)=Acosβdcos(ωt+φ)=Acosβdcos(ωt+φ(z))
其幅度值在z轴上的分布如图所示:
v(t,d)幅度值在z轴上的分布
在传输线的任意点上为幅度不同的正弦波
振幅最大处称为波腹 max ⁡ ∣ A cos ⁡ β d ∣ = ∣ A ∣ \max \left| {A\cos \beta d} \right|{\rm{ = }}\left| {\rm{A}} \right| maxAcosβd=A
振幅最小处称为波节 min ⁡ ∣ A cos ⁡ β d ∣ = 0 \min \left| {A\cos \beta d} \right|{\rm{ = }}0 minAcosβd=0
波节处没有正弦波的存在
这意味着波仅仅在原地振动,而不向前传播。

电压传播的一般形式

驻波比 S W R ∈ [ 1 , ∞ ) SWR∈[1,∞) SWR[1,)
S W R = ∣ V M A X ∣ ∣ V M I N ∣ = 1 + ∣ Γ 0 ∣ 1 − ∣ Γ 0 ∣ ⇒ ∣ Γ 0 ∣ = S W R − 1 S W R + 1 SWR = \frac{{\left| {{V_{MAX}}} \right|}}{{\left| {{V_{MIN}}} \right|}} = \frac{{1 + \left| {{\Gamma _0}} \right|}}{{1 - \left| {{\Gamma _0}} \right|}} \Rightarrow \left| {{\Gamma _0}} \right| = \frac{{SWR - 1}}{{SWR + 1}} SWR=VMINVMAX=1Γ01+Γ0Γ0=SWR+1SWR1

开路线、短路线、四分之一波长传输线

阻抗问题
V ( z ) = V 0 + e − γ z + V 0 − e γ z = V 0 + e − γ z { 1 + Γ 0 e 2 γ z } V(z) = {V_0}^ + {e^{ - \gamma z}} + {V_0}^ - {e^{\gamma z}} = {V_0}^ + {e^{ - \gamma z}}\left\{ {1 + {\Gamma _0}^{}{e^{2\gamma z}}} \right\} V(z)=V0+eγz+V0eγz=V0+eγz{1+Γ0e2γz}
I ( z ) = V 0 + Z 0 e − γ z − V 0 − Z 0 e γ z = V 0 + Z 0 e − γ z { 1 − Γ 0 e 2 γ z } I(z) = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{\gamma z}} = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - \gamma z}}\left\{ {1 - {\Gamma _0}^{}{e^{2\gamma z}}} \right\} I(z)=Z0V0+eγzZ0V0eγz=Z0V0+eγz{1Γ0e2γz}

Z d = V ( − d ) I ( − d ) = Z 0 1 + Γ 0 e − 2 γ d 1 − Γ 0 e − 2 γ d = Z 0 1 + Γ ( − d ) 1 − Γ ( − d ) {Z_d} = \frac{{V( - d)}}{{I( - d)}} = {Z_0}\frac{{1 + {\Gamma _0}^{}{e^{ - 2\gamma d}}}}{{1 - {\Gamma _0}^{}{e^{ - 2\gamma d}}}} = {Z_0}\frac{{1 + \Gamma ( - d)}}{{1 - \Gamma ( - d)}} Zd=I(d)V(d)=Z01Γ0e2γd1+Γ0e2γd=Z01Γ(d)1+Γ(d)

对于无耗传输线 注意公式中 d 的方向。
Z d = Z 0 1 + Γ 0 e − j 2 β d 1 − Γ 0 e − j 2 β d = Z 0 1 + Z L − Z 0 Z L + Z 0 e − j 2 β d 1 − Z L − Z 0 Z L + Z 0 e − j 2 β d = Z 0 ( Z L + Z 0 ) + ( Z L − Z 0 ) e − j 2 β d ( Z L + Z 0 ) − ( Z L − Z 0 ) e − j 2 β d = Z 0 Z L cos ⁡ β d + j Z 0 sin ⁡ β d Z 0 cos ⁡ β d + j Z L sin ⁡ β d = Z 0 Z L + j Z 0 t g β d Z 0 + j Z L t g β d {Z_d} = {Z_0}\frac{{1 + {\Gamma _0}^{}{e^{ - j2\beta d}}}}{{1 - {\Gamma _0}^{}{e^{ - j2\beta d}}}} = {Z_0}\frac{{1 + \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}{e^{ - j2\beta d}}}}{{1 - \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}}{e^{ - j2\beta d}}}}\\ = {Z_0}\frac{{\left( {{Z_L} + {Z_0}} \right) + \left( {{Z_L} - {Z_0}} \right){e^{ - j2\beta d}}}}{{\left( {{Z_L} + {Z_0}} \right) - \left( {{Z_L} - {Z_0}} \right){e^{ - j2\beta d}}}} \\ = {Z_0}\frac{{{Z_L}\cos \beta d + j{Z_0}\sin \beta d}}{{{Z_0}\cos \beta d + j{Z_L}\sin \beta d}} \\ = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} Zd=Z01Γ0ej2βd1+Γ0ej2βd=Z01ZL+Z0ZLZ0ej2βd1+ZL+Z0ZLZ0ej2βd=Z0(ZL+Z0)(ZLZ0)ej2βd(ZL+Z0)+(ZLZ0)ej2βd=Z0Z0cosβd+jZLsinβdZLcosβd+jZ0sinβd=Z0Z0+jZLtgβdZL+jZ0tgβd
Z i n ≡ Z d = Z 0 Z L + j Z 0 t g β d Z 0 + j Z L t g β d {Z_{in}} \equiv {Z_d} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} ZinZd=Z0Z0+jZLtgβdZL+jZ0tgβd
阻抗匹配时 Z i n = Z 0 {Z_{in}} = {Z_0} Zin=Z0
d = ∣ l ∣ {\rm{ }}d = \left| l \right| d=l
β d = 2 π λ d \beta d = \frac{{2\pi }}{\lambda }d βd=λ2πd

终端短路传输线

Z L = 0 {Z_L} = 0 ZL=0
Z i n 0 = j Z 0 t g β d {Z_{in0}} = j{Z_0}tg\beta d Zin0=jZ0tgβd
d = λ 4 ⇒ β d = π 2 ⇒ Z i n → ∞ d = \frac{\lambda }{4} \Rightarrow \beta d = \frac{\pi }{2} \Rightarrow {Z_{in}} \to \infty d=4λβd=2πZin
d = λ 2 ⇒ β d = π ⇒ Z i n = 0 d = \frac{\lambda }{2} \Rightarrow \beta d = \pi \Rightarrow {Z_{in}} = 0 d=2λβd=πZin=0
Z i n ( d ) {Z_{in}}(d) Zin(d)的周期= λ 2 \frac{\lambda }{2} 2λ
终端短路

终端开路的传输线

Z L → ∞ {Z_L} \to \infty ZL
Z i n ∞ = Z 0 Z L + j Z 0 t g β d Z 0 + j Z L t g β d = − j Z 0 c t g β d {Z_{in\infty}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} = {\rm{ - }}j{Z_0}ctg\beta d Zin=Z0Z0+jZLtgβdZL+jZ0tgβd=jZ0ctgβd
1 / j = − j 1/j=-j 1/j=j
终端开路的传输线
特征阻抗 Z 0 = Z i n 0 Z i n ∞ {Z_0} = \sqrt {{Z_{in0}}{Z_{in\infty }}} Z0=Zin0Zin
无论对分布参数网络还是集总参数网络都可以这样定义
当终端匹配时,输入阻抗等于特征阻抗

1/4波长传输线

t g β d → ∞ tg\beta d \to \infty tgβd
Z i n = Z 0 Z L + j Z 0 t g β d Z 0 + j Z L t g β d = Z 0 2 Z L {Z_{in}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} = \frac{{Z_0^2}}{{{Z_L}}} Zin=Z0Z0+jZLtgβdZL+jZ0tgβd=ZLZ02
一般说来Z0为纯电阻,实数
因此四分之一波长传输线可看成阻抗变换器,终端端接电容,输入端呈电感特性。一端开路,另一端短路。

★★★阻抗圆图导纳圆图
圆心在上半平面1/x>0电感性电抗x>0电纳b<0
圆心在下半平面1/x<0电容性电抗x<0电纳b>0

1/2波长的端接传输线

t g β d = 0 tg\beta d = 0 tgβd=0
Z i n = Z 0 Z L + j Z 0 t g β d Z 0 + j Z L t g β d = Z L {Z_{in}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}} = {Z_L} Zin=Z0Z0+jZLtgβdZL+jZ0tgβd=ZL

传输线常用公式和近似值★★★

传输线参数一般工程近似值(标称值):
γ = [ R + j ω L ] [ G + j ω C ] = α + j β , α ≈ 0 , β ≈ ω L C \gamma {\rm{ = }}\sqrt {\left[ {R + j\omega L} \right]\left[ {G + j\omega C} \right]} = \alpha + j\beta,\alpha \approx {\rm{0 }},\beta \approx \omega \sqrt {LC} γ=[R+jωL][G+jωC] =α+jβ,α0,βωLC
Z 0 = [ R + j ω L ] [ G + j ω C ] ≈ L C = { 50 Ω 75 Ω {Z_0}{\rm{ = }}\sqrt {\frac{{\left[ {R + j\omega L} \right]}}{{\left[ {G + j\omega C} \right]}}} \approx \sqrt {\frac{L}{C}} = \left\{ \begin{array}{l} 50\Omega \\ 75\Omega \end{array} \right. Z0=[G+jωC][R+jωL] CL ={50Ω75Ω
v p = ω β ≈ 1 L C ≥ 0.77 v C {v_p}{\rm{ = }}\frac{\omega }{\beta } \approx \frac{1}{{\sqrt {LC} }} \ge 0.77{v_C} vp=βωLC 10.77vC
λ = v p f = 1 f L C = 2 π β β = 2 π λ \lambda = \frac{{{v_p}}}{f} = \frac{1}{{f\sqrt {LC} }} = \frac{{2\pi }}{\beta }\beta = \frac{{2\pi }}{\lambda } λ=fvp=fLC 1=β2πβ=λ2π

无耗传输线传输线方程及参数关系
V ( z ) = V 0 + e − j β z + V 0 − e j β z = V + ( z ) + V − ( z ) V(z) = {V_0}^ + {e^{ - j\beta z}} + {V_0}^ - {e^{j\beta z}}= {V^ + }(z) + {V^ - }(z) V(z)=V0+ejβz+V0ejβz=V+(z)+V(z)
V + ( z ) = V 0 + e − j β z {V^ + }(z) = {V_0}^ + {e^{ - j\beta z}} V+(z)=V0+ejβz
V − ( z ) = V 0 − e j β z {V^ - }(z) = {V_0}^ - {e^{j\beta z}} V(z)=V0ejβz
I ( z ) = I 0 + e − j β z + I 0 − e j β z = V 0 + Z 0 e − j β z − V 0 − Z 0 e j β z I(z) = {I_0}^ + {e^{ - j\beta z}} + {I_0}^ - {e^{j\beta z}} = \frac{{{V_0}^ + }}{{{Z_0}}}{e^{ - j\beta z}} - \frac{{{V_0}^ - }}{{{Z_0}}}{e^{j\beta z}} I(z)=I0+ejβz+I0ejβz=Z0V0+ejβzZ0V0ejβz
I 0 + = V 0 + / V 0 + Z 0 Z 0 {I_0}^ + = {{{V_0}^ + } \mathord{\left/ {\vphantom {{{V_0}^ + } {{Z_0}}}} \right.} {{Z_0}}} I0+=V0+/V0+Z0Z0
I 0 − = − V 0 − / V 0 − Z 0 Z 0 {I_0}^ - = - {{{V_0}^ - } \mathord{\left/ {\vphantom {{{V_0}^ - } {{Z_0}}}} \right.} {{Z_0}}} I0=V0/V0Z0Z0

Γ 0 = Γ ( 0 ) = V 0 − V 0 + = Z L − Z 0 Z L + Z 0 {\Gamma _0} = \Gamma (0) = \frac{{{V_0}^ - }}{{{V_0}^ + }} = \frac{{{Z_L} - {Z_0}}}{{{Z_L} + {Z_0}}} Γ0=Γ(0)=V0+V0=ZL+Z0ZLZ0
Z L = Z 0 1 + Γ 0 1 − Γ 0 {Z_L} = {Z_0}\frac{{1 + {\Gamma _0}}}{{1 - {\Gamma _0}}} ZL=Z01Γ01+Γ0

Γ ( z ) = Γ 0 e j 2 β z = V − ( z ) V + ( z ) = Z i n ( z ) − Z 0 Z i n ( z ) + Z 0 \Gamma (z){\rm{ = }}{\Gamma _0}{e^{j2\beta z}} = \frac{{{V^ - }(z)}}{{{V^ + }(z)}} = \frac{{{Z_{in}}(z) - {Z_0}}}{{{Z_{in}}(z) + {Z_0}}} Γ(z)=Γ0ej2βz=V+(z)V(z)=Zin(z)+Z0Zin(z)Z0
Z i n ( z ) = Z 0 1 + Γ ( z ) 1 − Γ ( z ) = Z 0 1 + Γ 0 e j 2 β z 1 − Γ 0 e j 2 β z = Z 0 Z L − j Z 0 t g β z Z 0 − j Z L t g β z = Z 0 Z L + j Z 0 t g β d Z 0 + j Z L t g β d , d = − z {Z_{in}}(z) = {Z_0}\frac{{1 + \Gamma (z)}}{{1 - \Gamma (z)}} = {Z_0}\frac{{1 + {\Gamma _0}{e^{j2\beta z}}}}{{1 - {\Gamma _0}{e^{j2\beta z}}}} = {Z_0}\frac{{{Z_L} - j{Z_0}tg\beta z}}{{{Z_0} - j{Z_L}tg\beta z}} = {Z_0}\frac{{{Z_L} + j{Z_0}tg\beta d}}{{{Z_0} + j{Z_L}tg\beta d}},d = - z Zin(z)=Z01Γ(z)1+Γ(z)=Z01Γ0ej2βz1+Γ0ej2βz=Z0Z0jZLtgβzZLjZ0tgβz=Z0Z0+jZLtgβdZL+jZ0tgβd,d=z

Z i n ( z ) = j Z 0 t g β d = { j Z 0 t g 2 π λ d , Z L = 0 短 路 − j Z 0 c t g 2 π λ d , Z L → ∞ 开 路 Z 0 2 Z L , d = λ / 4 , t g β d → ∞ Z L , d = λ / 2 , t g β d = 0 {Z_{in}}(z) = j{Z_0}tg\beta d = \left\{ \begin{array}{l} j{Z_0}tg\frac{{2\pi }}{\lambda }d,{Z_L} = 0短路\\ -j{Z_0}ctg\frac{{2\pi }}{\lambda }d,{Z_L} \to \infty开路\\ \frac{{Z_0^2}}{{{Z_L}}},d = \lambda/{4},tg\beta d \to \infty\\ {Z_L},d =\lambda/{2},tg\beta d = 0 \end{array} \right. Zin(z)=jZ0tgβd=jZ0tgλ2πd,ZL=0jZ0ctgλ2πd,ZLZLZ02,d=λ/4,tgβdZL,d=λ/2,tgβd=0

S W R = 1 + ∣ Γ ∣ 1 − ∣ Γ ∣ ⇒ ∣ Γ ∣ = S W R − 1 S W R + 1 SWR = \frac{{1 + \left| \Gamma \right|}}{{1 - \left| \Gamma \right|}}{\rm{ }} \Rightarrow {\rm{ }}\left| \Gamma \right| = \frac{{SWR - 1}}{{SWR + 1}} SWR=1Γ1+ΓΓ=SWR+1SWR1

作业

《射频电路设计——理论与应用》
第二章中习题2.16, 2.19,2.25,2.28 2.31,2.33

As an AI language model, I do not have personal experience using web servers. However, I can provide you with some information on setting up a web server on ARM Linux. 1. Choose your ARM Linux distribution: There are several ARM Linux distributions available, such as Raspbian, Ubuntu MATE, and Arch Linux ARM. Choose one that is suitable for your ARM device and has good support for web servers. 2. Install the web server software: There are several web server software available for Linux, such as Apache, Nginx, and Lighttpd. Choose one that is suitable for your needs and install it using the package manager of your ARM Linux distribution. 3. Configure the web server: After installing the web server software, configure it according to your needs. This involves setting up the website files, defining the virtual hosts, configuring SSL if required, and setting up access controls. 4. Test the web server: After configuring the web server, test it by accessing the website using a web browser. Make sure that everything is working as expected. 5. Secure the web server: Finally, secure the web server by configuring firewalls, using SSL certificates, and following best practices for web server security. Note that setting up a web server on ARM Linux may require some technical knowledge and may vary depending on the specific ARM device and Linux distribution being used. It is always recommended to research and follow best practices for web server security to ensure that your website and data are secure.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzz的学习笔记本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值