这里写自定义目录标题
注意力
例子:有一个Python字典dictionary,有3个键和3个值
传递了一个单独的查询’color’
dictionary = {
'color': 'blue', 'age': 22, 'type': 'pickup'}
result = dictionary['color']
查询(Q)是你要找的内容:‘color’
键(K)表示字典里有什么样的信息:‘color’, ‘age’, ‘type’
值(V)则是对应的信息:‘blue’, 22, ‘pickup’
在普通的字典查找中,字典会找到匹配的键,并返回其对应的值;
如果查询找不到完全匹配的键,也许你会期望返回最接近的值
如果你查找’species’,result 可能会期望返回’pickup’,因为它是最接近查询的匹配。
注意力汇聚的输出为值的加权和
查询的长度为q,键的长度为k,值的长度为v。
q ∈ R 1 × q , k ∈ R 1 × k , v ∈ R 1 × v {\bf{q}} \in {
{\mathbb R}^{1 \times q}},{
{\bf{k}}} \in {
{\mathbb R}^{1 \times k}},{
{\bf{v}}} \in {\mathbb{R}^{1 \times v}} q∈R1×q,k∈R1×k,v∈R1×v
n个查询和m个键-值对
Q ∈ R n × q , K ∈ R m × k , V ∈ R m × v {\bf{Q}} \in {
{\mathbb R}^{n \times q}},{\bf{K}} \in {
{\mathbb R}^{m \times k}},{\bf{V}} \in {\mathbb{R}^{m \times v}} Q∈Rn×q,K∈Rm×k,V∈Rm×v
a ( Q , K ) ∈ R n × m {\bf{a}}\left( {
{\bf{Q}},{\bf{K}}} \right) \in {\mathbb{R}^{n \times m}} a(Q,K)∈Rn×m是注意力评分函数
α ( Q , K ) = s o f t m a x ( a ( Q , K ) ) = exp ( a ( Q , K ) ) ∑ j = 1 m exp ( a ( Q , K ) ) ∈ R n × m {\boldsymbol{\alpha}} \left( {
{\bf{Q}},{\bf{K}}} \right) = {\rm{softmax}}\left( {
{\bf{a}}\left( {
{\bf{Q}},{\bf{K}}} \right)} \right) = \frac{
{\exp \left( {
{\bf{a}}\left( {
{\bf{Q}},{\bf{K}}} \right)} \right)}}{
{\sum\limits_{j = 1}^m {\exp \left( {
{\bf{a}}\left( {
{\bf{Q}},{\bf{K}}} \right)} \right)} }} \in {\mathbb{R}^{n \times m}} α(Q,K)=softmax(a(Q,K))=j=1∑mexp(a(Q,K))exp(a(Q,K))∈Rn×m是注意力权重
f ( Q , K , V ) = α ( Q , K ) ⊤ V ∈ R n × v f({\bf{Q}},{\bf{K}},{\bf{V}}) = {\boldsymbol{\alpha}} {\left( {
{\bf{Q}},{\bf{K}}} \right)^ \top }{\bf{V}} \in {\mathbb{R}^{n \times v}} f(Q,K,V)=α(Q,K)⊤V∈Rn×v是注意力汇聚函数
加性注意力
q ∈ R 1 × q , k ∈ R 1 × k {\bf{q}} \in {\mathbb {R}^{1 \times q}},{\bf{k}} \in {\mathbb {R}^{1 \times k}} q∈R1×q,k∈R1×k
W q ∈ R h × q , W k ∈ R h × k , w v ∈ R h × 1 {
{\bf{W}}_q} \in {
{\mathbb R}^{h \times q}},{
{\bf{W}}_k} \in {
{\mathbb R}^{h \times k}},{
{\bf{w}}_v} \in {
{\mathbb R}^{h \times 1}} Wq∈Rh×q,Wk∈Rh×k,wv∈Rh×1
a ( q , k ) = w v ⊤ t a n h ( W q q ⊤ + W k k ⊤ ) ∈ R a({\bf{q}},{\bf{k}}) = {\bf{w}}_v^ \top {\rm{tanh}}({
{\bf{W}}_q}{
{\bf{q}}^ \top } + {
{\bf{W}}_k}{
{\bf{k}}^ \top }) \in \mathbb {R} a(q,k)=wv⊤tanh(Wqq⊤+Wkk⊤)∈R是注意力评分函数
缩放点积注意力
q ∈ R 1 × d , k ∈ R 1 × d , v ∈ R 1 × v {\bf{q}} \in {
{\mathbb R}^{1 \times d}},{\bf{k}} \in {
{\mathbb R}^{1 \times d}},{\bf{v}} \in {
{\mathbb R}^{1 \times v}} q∈R1×d,k∈R1×d,v∈R1×v
a ( q , k ) = 1 d q k ⊤ ∈ R a\left( {
{\bf{q}},{\bf{k}}} \right) = \frac{1}{
{\sqrt d }}{\bf{q}}{
{\bf{k}}^ \top } \in \mathbb{R} a(q,k)=d1qk⊤∈R是注意力评分函数
f ( q , k , v ) = α ( q , k ) ⊤ v = s o f t m a x ( 1 d q k ⊤ ) v ∈ R 1 × v f({\bf{q}},{\bf{k}},{\bf{v}}) = \alpha {\left( {
{\bf{q}},{\bf{k}}} \right)^ \top }{\bf{v}} = {\rm{softmax}}\left( {\frac{1}{
{\sqrt d }}{\bf{q}}{
{\bf{k}}^ \top }} \right){\bf{v}} \in {
{\mathbb R}^{1 \times v}} f(q,k,v)=α(q,k)⊤v=softmax(d1qk⊤)v∈R1×v是注意力汇聚函数
n个查询和m个键-值对
Q ∈ R n × d , K ∈ R m × d , V ∈ R m × v \mathbf Q\in\mathbb R^{n\times d}, \mathbf K\in\mathbb R^{m\times d}, \mathbf V\in\mathbb R^{m\times v} Q∈Rn×d,K∈Rm×d,V∈Rm×v
a ( Q , K ) = 1 d Q K ⊤ ∈ R n × m {\bf{a}}\left( {
{\bf{Q}},{\bf{K}}} \right) = \frac{1}{
{\sqrt d }}{\bf{Q}}{
{\bf{K}}^ \top } \in {\mathbb{R}^{n \times m}} a(Q,K)=d1QK⊤∈Rn×m是注意力评分函数
f ( Q , K , V ) = α ( Q , K ) ⊤ V = s o f t m a x ( 1 d Q K ⊤ ) V ∈ R n × v f({\bf{Q}},{\bf{K}},{\bf{V}}) = {\boldsymbol{\alpha}} {\left( {
{\bf{Q}},{\bf{K}}} \right)^ \top }{\bf{V}} ={\rm{softmax}}\left( {\frac{1}{
{\sqrt d }}{\bf{Q}}{
{\bf{K}}^ \top }} \right){\bf{V}} \in {\mathbb{R}^{n \times v}} f(Q,K,V)=α(Q,K)⊤V=softmax(d1QK⊤)V∈Rn×v是注意力汇聚函数
Attention Is All You Need
多头注意力
paddlepedia
L is the length of the sequence
d = 64 is the embedding dimension 是序列中用于表示每个符号的向量的长度
p = 64 is the dimension used in the attention function 是线性层的输出维度
h = 8
po = hd = 512
q ∈ R 1 × d q , k ∈ R 1 × d k , v ∈ R 1 × d v {\bf{q}} \in { {\mathbb R}^{1 \times {d_q}}},{\bf{k}} \in { {\mathbb R}^{1 \times {d_k}}},{\bf{v}} \in { {\mathbb R}^{1 \times {d_v}}} q∈R1×dq,k∈R