点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
了解图像分割
当我们在做一个图像分类任务时,首先我们会想从图像中捕获感兴趣的区域,然后再将其输入到模型中。让我们尝试一种称为基于聚类的图像分割技术,它会帮助我们在一定程度上提高模型性能,让我们看看它是什么以及一些进行聚类分割的示例代码。
什么是图像分割?
想象一下我们要过马路,过马路之前我们会做什么?
首先,我们会看道路两旁,以确定接近的车辆等环境对象,然后我们会对接近的车辆的速度做出一些快速的估计,并决定何时以及如何过马路。所有这些都发生在很短的时间内,非常很的神奇。
我们的大脑捕捉道路两侧的图像
它检测道路上的车辆和其他物体==物体检测
它还确定了它检测到的每个对象的形状 == 图像分割
通过确定不同物体的形状,我们的大脑能够在同一张快照中检测到多个物体,这是多么神奇啊。
让我们进一步了解,假设我们有我们的图像分类模型,它能够以 95% 上的准确率对苹果和橙子进行分类。当我们输入一幅同时包含苹果和橙子的图像时,预测精度会下降。随着图像中对象数量的