-
1、问题描述
-
给定n个作业的集合J={j1,j2,j3,…jn},每一个作业都有两项任务分别在两台机器上完成。每个作业必须先由机器1处理,再由机器2处理。作业Ji需要机器j的处理时间为tij,设Fij是作业i在机器j上的完成处理时间。所有作业在机器2上处理的时间和称为该作业调度的完成时间和。
-
批处理作业调度问题要求对于给定的N个作业,制定最佳作业调度方案,使其完成时间和达到最小。其中最典型的一个例子就是在计算机系统中完成一批n个作业,每个作业都先完成计算,然后将计算结果打印出来。
-
示例:
tji 机器1 机器2 作业1 2 1 作业2 3 1 作业3 2 3 在这个例子中。最优调度顺序为:1 3 2;处理时间为:18
-
2、算法描述
-
从n个作业的所有排列中找出有最小完成时间和的作业调度,所以批处理调度问题是一颗排列树按照回溯搜索排列树的算法框架,设开始时x=[1,2,3,4…,n]是所给的n个作业,则相应的排列树由 x[1,n]的所有排列构成。
-
在递归方法backtrack中,当i>n时,算法搜索至叶结点,得到一个新的作业调度方案。此时算法适时更新当前最优值和相应的当前作业调度。
-
当i<n时,当前扩展结点位于排列树的第i-1层。此时算法选择下一个要安排的作业,以深度优先的方式递归的对相应字数进行搜索。对于不满足上届约束的结点,则减去相应的子树。
-
程序初始化:
int x[100];//记录当前调度
int bestx[100];//记录当前最优调度
int m[100][100];<