报错1:
RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by (1) passing the keyword argument
find_unused_parameters=True
totorch.nn.parallel.DistributedDataParallel
; (2) making sure allforward
function outputs participate in calculating loss. If you already have done the above two steps, then the distributed data parallel module wasn’t able to locate the output tensors in the return value of your module’sforward
function. Please include the loss function and the structure of the return value offorward
of your module when reporting this issue (e.g. list, dict, iterable).
这个是我在进行多GPU训练时报错的,上网查了一些情况 以及 上述报错提醒后 得知可能是如下的错误:
- 并行运算产生的问题
- 代码问题,比如通道数不对、forward中的所有通道是否都使用了、更新损失时产生的问题
为了排除,我先单GPU训练了一下,发现报错没有了,因此肯定不是代码问题了。
随后在Github上看到有人提出的方法:use the find_unused_parameters=True option when wrapping the model in torch.nn.parallel.DistributedDataParallel.
即修改 mmdet/apis/train.py 下的114行代码
# put model on gpus
# 基于是否使用分布式训练,初始化对应的DataParallel