RNN:循环神经的网络结构及其特点
前言
循环神经网络(Recurrent Neural Network, RNN)是用来建模序列化数据的一种主流深度学习模型。RNN将神经元串行起来,每个神经元能用它的内部变量保存之间输入的序列信息来把整个序列浓缩成抽象表示,并据此进行分类或生成新的序列,解决了传统前馈神经网络无法处理变长序列和难以捕捉序列中长距离的依赖关系的问题,基于此特点RNN在机器翻译、序列标注、图像标注、推荐系统、智能聊天机器人和自动作词作曲等取得了广泛的应用,本文整理总结了网上和书上关于RNN的重要知识点,来帮助理解这个模型。
一、循环神经网络(RNN, Recurrent Neural Networks)介绍?
循环神经网络(RNN, Recurrent Neural Networks)介绍