大数据实验七

博客主要介绍了安装Spark和Scala的步骤,包括下载、解压、启动环境等。还讲述了搭建Spark伪分布的配置过程,以及安装sbt的参考网址。此外,详细说明了使用Spark Shell统计本地文件,并用Scala和Java程序实现WordCount统计的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装spark并编写scala

一、安装spark
1、下载:https://www.apache.org/dyn/closer.lua/spark/spark-2.4.2/spark-2.4.2-bin-hadoop2.7.tgz
2、解压压缩包
3、先启动hadoop 环境start-all.sh
4、启动spark环境
进入到SPARK_HOME/sbin下运行start-all.sh
/opt/module/spark/sbin/start-all.sh
修改配置文件后进入Spark的sbin目录启动spark:
./start-all.sh
启动 Spark Shell :
./bin/spark-shell
二、安装Scala:
1、下载:https://downloads.lightbend.com/scala/2.12.8/scala-2.12.8.rpm
2、tar -zxvf scala-2.12.8.tgz -C /opt/module
3、mv scala-2.12.8 scala
4、测试:scala -version
5、启动:scala
WordCount:
1、在 Spark Shell 使用本地文件进行统计
2、在 CentOS中 编写 WordCount 程序,在 Spark Shell 中执行程序
3、编写 Java 版的 WordCount 程序并执行:
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

三、搭建spark伪分布
配置spark-env.sh

export JAVA_HOME=/usr/java/jdk1.8.0_211-amd64
export SCALA_HOME=/usr/share/scala
export HADOOP_HOME=/usr/local/hadoop/hadoop-2.7.7
export HADOOP_CONF_DIR=/usr/local/hadoop/hadoop-2.7.7/etc/hadoop
export SPARK_MASTER_HOST=bigdata
export SPARK_MASTER_PORT=7077
export  LD_LIBRARY_PATH=$HADOOP_HOME/lib/native

配置etc/profile

export JAVA_HOME=/usr/java/jdk1.8.0_211-amd64
export HADOOP_HOME=/usr/local/hadoop/hadoop-2.7.7
export HBASE_HOME=/usr/local/hbase/hbase-1.4.9
export HIVE_HOME=/usr/local/hive/apache-hive-2.3.4-bin
export SPARK_HOME=/usr/local/spark/spark-2.4.2-bin-hadoop2.7
export LD_LIBRARY_PATH=$HADOOP_HOME/lib/native

source profile使其生效
进入Spark 的 sbin 目录执行 start-all.sh 启动 spark:./start-all.sh
输入spark-shell进入spark界面

四、安装sbt
参考网址:http://dblab.xmu.edu.cn/blog/1307-2/

五、统计本地文件

val textFile = sc.textFile("file:///usr/local/spark/mycode/wordcount/word.txt")
wordCount.collect()

六、scala程序实现wordcount统计

spark-submit --class "WordCount"  /usr/local/spark/mycode/wordcount/target/scala-2.11/simple-project_2.11-4.1.jar

相关scala程序:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object WordCount {
    def main(args: Array[String]) {
        val inputFile =  "file:///usr/local/spark/mycode/wordcount/word.txt"
        val conf = new SparkConf().setAppName("WordCount").setMaster("local[2]")
        val sc = new SparkContext(conf)
                val textFile = sc.textFile(inputFile)
                val wordCount = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
                wordCount.foreach(println)
    }
}

七、java程序实现wordcount统计
程序详情:

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
 
import java.util.Arrays;
 
public class JavaWordCount {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("Spark WordCount written by java!");
 
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        JavaRDD<String> textFile = sc.textFile("hdfs:///user/hadoop/word.txt");
        JavaPairRDD<String, Integer> counts = textFile
                .flatMap(s -> Arrays.asList(s.split(" ")).iterator())
                .mapToPair(word -> new Tuple2<>(word, 1))
                .reduceByKey((a, b) -> a + b);
        counts.saveAsTextFile(hdfs:///user/hadoop/writeback");
        sc.close();
    }
}

相关依赖

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>Spark</groupId>
  <artifactId>SPARK</artifactId>
  <version>0.0.1-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.4.1</version>
        </dependency>
    </dependencies>
 
    <build>
        <pluginManagement>
            <plugins>
                <plugin>
                    <artifactId>maven-assembly-plugin</artifactId>
                    <configuration>
                        <appendAssemblyId>false</appendAssemblyId>
                        <descriptorRefs>
                            <descriptorRef>jar-with-dependencies</descriptorRef>
                        </descriptorRefs>
                        <archive>
                            <manifest>
                                <mainClass>JavaWordCount</mainClass>
                            </manifest>
                        </archive>
                    </configuration>
                    <executions>
                        <execution>
                            <id>make-assembly</id>
                            <phase>package</phase>
                            <goals>
                                <goal>assembly</goal>
                            </goals>
                        </execution>
                    </executions>
                </plugin>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <configuration>
                        <source>8</source>
                        <target>8</target>
                    </configuration>
                </plugin>
            </plugins>
        </pluginManagement>
    </build>
    </project>

打包上传到centos后

spark-submit --class spark.JavaWordCount --master spark://bigdata:7077 /usr/local/sp

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值