题目
给定一个二维矩阵 matrix,以下类型的多个请求:
计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2) 。
实现 NumMatrix 类:
NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
int sumRegion(int row1, int col1, int row2, int col2) 返回左上角 (row1, col1) 、右下角 (row2, col2) 的子矩阵的元素总和。
示例
输入:
[“NumMatrix”,“sumRegion”,“sumRegion”,“sumRegion”]
[[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]]
输出:
[null, 8, 11, 12]
解释:
NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]);
numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和)
numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和)
numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/range-sum-query-2d-immutable
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
想法
每行用前缀和的思想存入一个数组中
实现
方法1:python
class NumMatrix:
def __init__(self, matrix: List[List[int]]):
row,col=len(matrix),len(matrix[0])
self.res=[[0]*(col+1) for i in range(row)]
for i in range (row):
for j in range (1,col+1):
self.res[i][j] = self.res[i][j-1] + matrix[i][j-1]
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
sum=0
for i in range(row1,row2+1):
sum+=self.res[i][col2+1]-self.res[i][col1]
return sum
# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# param_1 = obj.sumRegion(row1,col1,row2,col2)
方法2:java
class NumMatrix {
int[][] sums;
public NumMatrix(int[][] matrix) {
int row = matrix.length;
int cln = matrix[0].length;
this.sums = new int[row][cln + 1];
for (int i = 0; i < row; i++) {
for (int j = 0; j < cln; j++) {
this.sums[i][j + 1] = sums[i][j] + matrix[i][j];
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
int sum = 0;
for (int i = row1; i <= row2; i++) {
sum += sums[i][col2 + 1] - sums[i][col1];
}
return sum;
}
}