机器学习实战之 -- NaiveBayes
NaiveBayes
一、工作原理
1.条件概率:
P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k ) ,   k = 1 , 2 , 3 , . . . , K P(X=x|Y=c_k) = P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}| Y=c_k) , \:k = 1,2,3,...,K P(X=x∣Y=ck)=P(X(1)=x(1),...,X(n)=x(n)∣Y=ck),k=1,2,3,...,K
2.朴素贝叶斯成立的条件概率假设:
P ( X = x   ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n )   ∣ Y = c k )                          = ∏ j = 1 n P ( X ( j ) = x ( j )   ∣ Y = c k ) P(X=x\:|Y=c_k) = P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}\:| Y=c_k)\\ \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\prod_{j=1}^nP(X^{(j)}=x^{(j)}\:|Y=c_k) P(X=x∣Y=ck)=P(X(1)=x(1),...,X(n)=x(n)∣Y=ck)=j=1∏nP(X(j)=x(j)∣Y=ck)
3.后验概率:
P ( Y = c k   ∣ X = x ) = P ( X , Y ) P ( X )                                                             = P ( X = x   ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x   ∣ Y = c k ) P ( Y = c k )    ,      k = 1 , 2 , 3 , . . . , K P(Y=c_k\:|X=x) =\frac{P(X,Y)}{P(X)}\\ \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:= \frac{P(X=x\:|Y=c_k)P(Y=c_k)}{\sum_kP(X=x\:|Y=c_k)P(Y=c_k)} \:\:, \:\:\:\: k = 1,2,3,...,K P(Y=ck∣X=x)=P(X)P(X,Y)=∑kP(X=x∣Y=ck)P(Y=ck)P(X=x∣Y=ck)P(Y=ck),k=1,2,3,...,K
3.朴素贝叶斯分类器:
y
=
f
(
x
)
=
a
r
g
max
c
k
P
(
Y
=
c
k
)
∏
j
=
1
n
P
(
X
(
j
)
=
x
(
j
)
 
∣
Y
=
c
k
)
∑
k
P
(
X
=
x
 
∣
Y
=
c
k
)
P
(
Y
=
c
k
)
  
,
    
k
=
1
,
2
,
3
,
.
.
.
,
K
y = f(x)=arg\max_{c_k}\frac{P(Y=c_k)\prod_{j=1}^nP(X^{(j)}=x^{(j)}\:|Y=c_k)}{\sum_kP(X=x\:|Y=c_k)P(Y=c_k)} \:\:, \:\:\:\: k = 1,2,3,...,K
y=f(x)=argckmax∑kP(X=x∣Y=ck)P(Y=ck)P(Y=ck)∏j=1nP(X(j)=x(j)∣Y=ck),k=1,2,3,...,K
注意到,上式中分母对所有的
c
k
c_k
ck都是相同的,所以,
y
=
f
(
x
)
=
a
r
g
max
c
k
P
(
Y
=
c
k
)
∏
j
=
1
n
P
(
X
(
j
)
=
x
(
j
)
 
∣
Y
=
c
k
)
  
,
 
k
=
1
,
2
,
3
,
.
.
.
,
K
y = f(x)=arg\max_{c_k}{P(Y=c_k)\prod_{j=1}^nP(X^{(j)}=x^{(j)}\:|Y=c_k)} \:\:,\:k = 1,2,3,...,K
y=f(x)=argckmaxP(Y=ck)j=1∏nP(X(j)=x(j)∣Y=ck),k=1,2,3,...,K
二、核心代码
from numpy import *
def loadDataSet():
'''
Desc:创建实验样本
'''
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 侮辱性, 0 正常
return postingList,classVec
def createVocabList(dataSet):
'''
Desc:处理dataset返回不重复词表
'''
#创建一个空集合
vocabSet = set([])
for document in dataSet:
# 用于求两个集合的并集
vocabSet = vocabSet | set(document)
return list(vocabSet)
#
def setOfWords2Vec(vocabList, inputSet):
'''
Desc:词集模型,构造词向量
vocabList:词库
inputSet:待转换词
'''
# 创建一个与词汇表等长的向量,所有元素都为0
returnVec = [0]*len(vocabList)
# 遍历输入文档中的每个词
for word in inputSet:
# 判断词是否在词汇表中
if word in vocabList:
# 将词在词汇表中出现的位置,对应的标记在等长0向量中
returnVec[vocabList.index(word)] = 1
else: print("the word: %s is not in my Vocabulary!" % word)
return returnVec
#
def trainNB0(trainMatrix,trainCategory):
'''
Desc:朴素贝叶斯分类器训练函数
params:
trainMatrix:文档矩阵
trainCategory:标签向量
return:
'''
# 文档行数(向量个数)
numTrainDocs = len(trainMatrix)
# 词的个数
numWords = len(trainMatrix[0])
# 计算侮辱性文字的先验概率:P(y=1)
pAbusive = sum(trainCategory)/float(numTrainDocs)
# 构造两个与词汇表相同长度的向量,元素均为1,避免算多个概率的乘积为0。
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
# 遍历所有的向量
for i in range(numTrainDocs):
# 如果是侮辱性文字
if trainCategory[i] == 1:
# 统计侮辱性词出现的频率
p1Num += trainMatrix[i]
print(trainMatrix[i],'trainMatrix[i]====')
print(p1Denom,'before====p1Denom')
# 统计行中所有词数
p1Denom += sum(trainMatrix[i])
print(p1Denom,'p1Denom====')
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# 太多很小的数相乘,避免下溢出或者浮点数舍入导致的错误
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
listPosts,listClasses = loadDataSet()
myVocaList = createVocabList(listPosts)
trainMat = []
for postinDoc in listPosts:
trainMat.append(setOfWords2Vec(myVocaList,postinDoc))
p0v,p1v,pAb = trainNB0(trainMat, listClasses)
p0v,p1v,pAb
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
'''
Desc:计算后验概率分类
vec2Classify:词向量
p0Vec:类别为0的条件概率
p1Vec:类别为1的条件概率
pClass1:类别为1的先验概率
'''
# 已知p1求后验概率
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
# 已知p0求后验概率
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
# 分类
if p1 > p0:
return 1
else:
return 0
def testingNB():
'''
Desc:测试算法
'''
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testingNB()
[‘love’, ‘my’, ‘dalmation’] classified as: 0
[‘stupid’, ‘garbage’] classified as: 1
持续更新中…